Curso de Pds-Graduacéo
“Lato Sensu” (Especializacéo) a Distancia
Administracao em Redes Linux

AUTOMACAO DE TAREFAS

Herlon Ayres Camargo

Universidade Federal de Lavras — UFLA
Fundacao de Apoio ao Ensino, Pesquisa e Extensdo — FAEPE
Lavras — MG

PARCERIA
UFLA — Universidade Federal de Lavras
FAEPE — Fundacédo de Apoio ao Ensino, Pesquisa e Extensao

REITOR
Antdnio Nazareno Guimaraes Mendes

VICE-REITOR
Ricardo Pereira Reis

DIRETOR DA EDITORA
Marco Antonio Rezende Alvarenga

PRO-REITOR DE POS-GRADUACAO
Joel Augusto Muniz

PRO-REITOR ADJUNTO DE POS-GRADUACAO “LATO SENSU”
Marcelo Silva de Oliveira

COORDENADOR DO CURSO
Katia Cilene Amaral Uchbda

PRESIDENTE DO CONSELHO DELIBERATIVO DA FAEPE
Edson Ampélio Pozza

EDITORACAO
Grupo Ginux (http://ginux.comp.ufla.br/)

IMPRESSAO
Gréfica Universitaria/lUFLA

Ficha Catalografica preparada pela Divisdo de Processos Técnicos
da Biblioteca Central da UFLA

Camargo, Herlon Ayres

Automacao de Tarefas / Herlon Ayres Camargo. -- Lavras: UFLA/FAEPE,
2005.

p. : il. - Curso de Pos-Graduacdo “Lato Sensu” (Especializacéo) a
Distancia: Administragcdo em Redes Linux.

Bibliografia.
1. Informatica. 2. Linux. 3. Scripts. 4. Bash. 5. Perl. 6. Rpm. 7.
Cron I. Camargo, H.A. Il. Universidade Federal de Lavras. Ill. Fundacao de

Apoio ao Ensino, Pesquisa e Extensao. IV. Automacao de Tarefas.

CDD-005.43

Nenhuma parte desta publicacdo pode ser reproduzida, por qualquer
meio ou forma, sem a prévia autorizagao.

http://ginux.comp.ufla.br/

SUMARIO

1 Introducdo | 13
[2 Shell-Script | 17
2.1 Introducaon|. e e e 17
RIT Shelll. 17
2.1.2 Shell-Script| 17
2.1.3 PrincipaisShells| 18

[2.2 Caracteristicas do Bash para Shell-Scripts| 19
2.2.1 Metacaracteres|. 19
2.2.2 Variavel Ambien Istemal o 19
2.2.3 Redirecionamento de Entradae Saidal. 20

2.3 Comandos Uteis| o i 22
[2.3.1 grep,egrepefgrepl. 23
...................................... 24
233 CUll. . . o, 24

3.4 paste]l ..o 25
2.3.5 head|. e 25

236 ftailll. 25
..................................... 25
2.3.8 bcl . . . 26
239 S0MM . . o 27
2.3 10 UNigl e e 29

[2.4 Caracteristicas Iniciais do Shell-Script| 30
2.4.1 OPrimeiro Script|. 30
2.4.2 AspasDuplas—("). 32
[2.4.3 Aspas Simples ou Apostrofo—()l o oo 33
2.4.4 Apostrofo Invertido—(*). oo 33
2.45 Barralnvertida—(\) e 33

24.6 Parénteses| 34

25 Variavels 34
2.5.1 Variavelsde Usuariol e 34
2.5.2 ndo Variavels|. e e e 34
[2.5.3 Variaveis Incorporadas| 35

2.6 Operadores| 37
2.6.1 Operadoresde String| 38
2.6.2 Operadoresde NOmMeros|, 38
[2.6.3 Operadores de ArquiVOS|. v i i 39
|2.6.4 Operadores Logicos| 40
............................... 41
2.7.1 Estruturas Condicionaisl 41
2.7.2 Estruturasde Repeticdo] 44

2.1. omandodesaida—exit| 48

2.8 FUNCOES| o 48

2.9 ScriptsInterativos] 49
2.9 ead] 50
292 selectl 51
29.3 Pr ntr Interatividadel 52

[2.10 Exemplo — Construindo uma Lixeira: parte /2| 53
[2.10.1 Scriptlixo.sh | 55

[3 Sed, Awk e Expressoes Regulares | 61
(3.1 Introducgao|. 61
B2 Sed 61

2.1 r risti rais| 61
13.2.2 Substitulr—s| 63
[3.2.3 Imprimir—p|. 66
B.24 Deletar—d 67

2.5 Acr ntar—al. 67
B.26 Inserir—1 e 67
B.2.7 Trocar —Cl o o e e 68
[3.2.8 FInalizar—q|. e 68

3.3 AWK . .. e 69
3.3.1 Caracteristicas Gerals| e 69
[3.3.2 Funcionamentol. 70
[3.3.3 PadrGes e Procedimentos] 70

3.4 [da Formatadal. e 74
3.3.5 Variavels| 75
[3.3.6 FuncoesInternas|. 76
[3.3.7 Estruturas CondiCloNals] v« v v v i e e e e e 78
(3.3.8 Estruturas de Repeticao| 79
B39 Vetores e 80

(3.4 Exemplo — Construindo uma Lixeira: parte 2/2| 81
[3.4.1 Script lixeira.sh [e 82

[3.5 Expressoes Regulares|. 83

5.1 racteristi rais| 83
3.5.2 Metacaracteres|. 84

[4__Perll 89

4.1 Introducaol. 89

4.2 Caracteristicas Basicasde Perll 90
4.2.1 OPrimeiroProgramal, 90

43 VariaveisemPerl 92
4.3.1 Variavelscalar| 93
4.3.2 Variavelarray|. 94
4.3.3 Variavelhashl 97

4.4 Operadores| 100
4.4.1 Operadores AritmetiCos| o i e 100

4.4.2 Operadoresde String| o 102

4.4.3 Operadores de Atribuicao| 102
Z42_Operadores LOGICOS] - - + « « v v v e 104
4.45 Operadoresde Comparacao] 105
4.4.6 Operadores de Testede Arquivo| o v v v v vt 105
45 EstruturasdeConfrolel 105
4.5.1 Estrutur NAICIONAIS]« v v v i e e e e e e 105
4.5.2 Estruturas de Repeticao| 107
4.6 _Handle de arquivos|. 110
M7 SUb-ROUNAS|. . . .« o o oo 112
4.7.1 EscopodeVariavels| e 113
48 Referénciasl 114
4.9 Expressoes Regulares|. 114
{4.10 Exemplo Final — Um Analisadorde Logs| 118
5_Ferramentas de Desenvolvimento | 125
5.1 Introducaon|. e e 125
5.2 Oprogramamake| 126
B3 AUTOTOOLS] . .« « o o oo vt e e e e e e e e e e 131
[6__RPMS| 139
6.1 Introducao|. e 139
6.2 rando Pacotes RPM| e 140
[6.3 Segurancal 142
[/ Agendamento de Tarefas | 145
7.1 INtroducan]. L e e e 145
72 USOdOCION . . v v vt e e e e e e e e e 145
7.2.1 racteristi 721 145
7.2.2 Formatodo ArquivoCrontab| 146
[7.2.3 CriandoumArquivoCrontab| 147
(.3 UsSOdoAL 148
[(.3.1 Caracteristicas Geraisl 148
[.3.2 n Al . e 149

[Referéncias Bibliogréficas 151

LISTA DE FIGURAS

2.1 nel rminal exibin helll. 18
[2.2 Exemplos de uso dos caracteres de redirecionamento.. 22
(2.3 Exemplo do grep procurando string dentro de um arquivo especificado.| . . . 23
2.4 Exemplo do gre rocurando string dentro de varios arquivos.| 23
2.5 Exemplo do grep procurando string em saida de comando,. 23
[2.6 Exemplo de uso do grep comasopgcoes-c e-l [. 24
2.7 Exemplodeusodogrep comaopgcao-V 24
2.8 Exemplode usodocomandoWC. e 24
2.9 Exemplosdeusodocut comaopcao-C .| 26
[2.10 Exemplo de uso do cut comasopgcoes-f e-d 27
[2.11 Exemplo de uso do comandopaste .|, 27
[2.12 Exemplo de usodo comandohead.| 28
[2.13 Exemplo de uso do comandotaill .| 28
[2.14 Exemplos de uso do comando expr .|. 28
[2.15 Exemplo de uso docomandobc.|. o 28
[2.16 Exemplo de uso do comando sort .| 29
[2.17 Exemplo de usodocomando uniq.| e 29
[2.18 Codigo-fonte do script olamundo.sh | L. 30
2.19 Execucdo do script olamundo.sh de formadireta] 30
2.20 Execucao do script olamundo.sh atraves da chamada do interpretador.| . . 31
[2.21 Usando caracteres de escapecomecho .| 32
[2.22 Execucao do script olamundo.sh com caracteres de escape.| 32
[2.23 Usando aspas duplas.| 33
[2.24 Usando aspas simples.| e 33
[2.25 Usando apostrofo invertido.| 33
[2.26 Usando a barrainvertidal 34
[2.27 Usando parénteses.| e e 34
[2.28 Exemplo olamundo.sh usandoumavariavel.| 35
2.29 Form rr finirumavariavel. o oo, 35
[2.30 Forma correta de se definirumavariavel 35
[2.31 Usando aspas e apostrofos na definicao de variaveis.| 36
[2.32 Script utilizando variavels incorporadas.| 36
[2.33 Variavels incorporadas em acao.| 37
[2.34 Script usandoshift .| 37
[2.35 Resultado do script usando shift .| oL, 37
[2.36 Uso docomandotest .| 38
[2.37 Exemplo dos operadoresde string.| oo 38
[2.38 Exemplo dos operadores de numeros.|o 39
[2.39 Exemplo dos operadores de arquivo.| L. 40
[2.40 Exemplo de operadores logicos.| Lo 40
2.41 Usando || paraencurtar linhasdecodigo.| 41

2.42 Usando &¶ encurtar inhasde codigo.| 41

2.43 Format I truturaif | 42

[2.44 Exemplo simplesdeusodoIf .[. 42
[2.45 Verificando se um usuario esta logadocomif .[. 43
2.4 ndo It T 43
[2.47 Exemplo de uso da estruturacase .| 44
[2.48 Primeiro exemplo da estruturafor .| 44
[2.49 Segundo exemplo da estruturafor [. 45
[2.50 Terceiro exemplo da estruturafor .[. 45
[2.51 Quarto exemplo da estruturafor .|, 45
[2.52 Quinto exemplo da estruturafor .|, 45
[2.53 Nova sintaxe para o comandofor v 46
[2.54 Exemplodeusodowhile .| o 46
[2.95 Exemplodeusodountll .| 47
[2.56 Exemplodeusodobreak .| L L a7
[2.57 Exemplo de usodocontinue .|. 48
[2.58 Exemplo de uso do comando exit .| 49
[2.59 Estruturabasicadeumafuncdo) 49
[2.60 Exemplodeusodeumafuncdol. 50
[2.61 Exemplo de script nao interativo.| 0 50
[2.62 Exemplo de script interativo.] 50
[2.63 Lendo linha por linhade umarquivo.| 51
[2.64 Usando o read para ler linha por linha de um arquivo.| 51
[2.65 Exemplodeusodoselect .| 53
[2.66 ExemplodeusodoSREPLY] 54
[2.67 Testando os parametros do script lixo.sh .| 55
[2.68 Criando o diretorio .lixelra d o 56
[2.69 Verificando arquivos que serdo apagados.|. 57
2.70 Codigo completo do script lixo.sh |, 58
2.71 Codigo completo do script lixo.s continuagcao).| 59

1 Sin MSed.. e 62
[3.2 Arquivo de comandossed.| 62
[3.3 Executandoumarquivosed. 62
13.4__Sintaxe dos comandos usados comsed.| 63
[3.5 Usandochavescomsed.| vt i it i 63
[3.6 Conteudo do arquivo meutexto.txt .| L 64
(3.7 Substituindo “Linux” por “Gnu-Linux” no arquivo meutexto.txt 64
(3.8 Substituindo “Linux” e “linux” por “Gnu-Linux” no arquivo meutexto.txt .[. . 65
3.9 Usando a contra-barra.o e e 65
[3.10 Definindo enderegco paraosed.| 65
3.11 Usando a funcdo p em conjuntocomaopcao-n.| 66
3.12 UsandoafuncGopsemaopcdo-n.|. 66
B.13 Usando o simbolodenegacdo!]. 66
B.14 USando @ funcio . . . « .« « oo e 67
B.15 Usandoafungdoa.,, 67

B.d6 Usandoafuncdoi |, 68

[3.17 Usando afungao C.| e 68

[3.18 Finalizando a execucao naquinta.] 69
[3.19 Finalizando a execucao ao encontrar a palavra “interatividade”.| 69
[3.20 Passando Instrucoes para o awk na linha de comandos.| 70
[3.21 Passando um script parao awk processar.| 0. 70
[3.22 Conteudo do arquivo estoque.txt .[. 71
[3.23 Listando 0S pProdutos.| o o e e e e e 71
[3.24 Listando 0S produtos com seus respectivos precos.| 72
[3.25 Usando padrées parapesquisal 72
[3.26 Produtos que possuem menos de 20 unidades no estoque.| 73
[3.27 Produtos que comecam comaletra™"| 73
[3.28 Usando expressdo regularcomoawk,. 74
[3.29 Script usando os padrées BEGINe END|. 74
[3.30 Resultado do script relatoriol.awk | 75
[3.31 Script usando saida formatada.|., 75
[3.32 Resultado do script relatorio2.awk | 76
[3.33 Script usando variaveis de sistema.| 77
[3.34 Resultado do script relatorio3.awk | R 77
13.35 Formato basico da estrutura condicional if -else _no Awk., 79
[3.36 Exemplo de uso da estrutura condicional it -else .[. 79
[3.37 Resultado do script barato.awk .| Lo oL 79
3.38 Formato basico da estrutura de repeticiowhile |. 80
3.39 Formato basico da estrutura de repeticiofor | 80
[3.40 Sintaxe utilizada paravetores.|. e 80
[3.41 Exemplode usodevetores.| e 81
[3.42 Resultado do script contador.awk [, o oL 81
[3.43 Codigo do menu do script lixeira.sh S 82
13.44 Codigo dafuncdoexibe() .|, 83
[B.45 Codigo dafuncdorestaura() .| 84
13.46 Codigo dafuncdoesvazia() .[. 84
[3.47 Cadigo completo do script lixeira.sh | 85
[3.48 Codigo completo do script lixeira.sh (continuacao).| 86
4.1 Codigo fonte do script olamundo.pl .[. 90
4.2 Resultado da execucao do script olamundo.pl 90
4.3 Executando o script olamundo.pl através da chamada do interpretador.|. . 91
[4.4 Usando a opcao -w na primeiralinhadocddigo] 92
4.5 Passando-se a opcao -w pelalinhade comandos.| 92
4.6 Usando umavariaveldotiposcalar.| 92
4.7 Exemplos de variaveldotiposcalar.| 93
[4.8 Conversdo automaticado tipodavariavel]. 93
[4.9 Usando aspas duplas, simples e apostrofo invertido.| 94
[4.10 Resultado do uso de aspas duplas, simples e apostrofo invertido.|. 94
4.11 Exemplos de variaveis dotipoarray.|o 95
l4.12 Script fazendousodoslice.| L 95

[4.13 Resultado da execucao do script da Figurald.12| 95|

[4.14 Script usando o operador $#.| L 96

{4.15 Resultado da alteracao do tamanhodeumarray. 96
{4.16 Criando um array com numeros Inteiros e consecutivos.| 96
[4.17 Script usando afuncdoreverse() 96
[4.18 Resultado da execucao do script da Figurald. 14 97|
4.19 Script usando afuncaosort() .|o 97
[4.20 Resultado da execucao do script da Figurald.19, 97|
[4.21 Script usando as funcdes de insercdo e remocao de elemento num array.| . . 97
4.22 Criando um hash a partirdeumalista. 98
[4.23 Usando o sinal => parase criarumhash.] 98

.24 Crian m_hash atrav ntr individuais.] 99
[4.25 Exemplo de uso da variavelhash.| 99
[4.26 Resultado da execucao do script da Figurald.25| 99
l4.27 Transformando hashemarray.| 100
[4.28 Resultado da execucao do script da Figurald.24] 100
14.29 Usando as funcoes keys() , values() , exists() edelete() .|...... 101
14.30 Invertendo chaves com valores numa variavel hash) 102
[4.31 Utilizando o operador derepeticdo]. 103
[4.32 Resultado da execucao do script da Figurald.31[. 103
[4.33 Utilizando operadores de atribuicao.] 103
{4.34 Utihzando operadores logicos.| 104
M35 Usandoif eelse | 106
4.36 Usandoif ,elsit _eelse .|. 107
M37Usandoounless i 107
4.38 Usandoowhile 108
4.39 Usandoountil e 108
440 Usandoofor 108

41 n foreach 109
442 Usandoonext elast |. 109
{4.43 Resultado da execucao do script da Figurai4.42, 110
........................ 110
[4.45 Resultado da execucao do script da Figurald.44] 110
{4.46 Lendo e gravando dados em arquivos.| 111
4.47 Usando a funcao chomp() .|. 112
{4.48 Resultado da execucao do script da Figuraid.44| 112
[4.49 Exemplo de uso de sub-rotinas.|., 112
4.50 Usando a diretivause strict |o 113
{4.51 Resultado da execucao do script da Figurald.50 113
[4.52 Usando o array @ARGN e 114
{4.53 Resultado da execucao do script da Figurald.52 114
454 Usandoreferéncias) 115
[4.55 Exemplo de uso de expressoes regulares.|. L. 116
[4.56 Exemplodeusodos//l .|. e 116
[4.57 Exemplo de referéncias posteriores.| o 117

[4.58 Formato padrao de um arquivo de log do servidorWeb.| 118

4.59 Exemplo do conteudo de um arquivo de log do servidor Web.| 118
4.60 Primeira etapa do exemplo “Analisador defogs™] 119
4.61 Segunda etapa do exemplo “Analisadordefogs™] 120
4.62 Terceira etapa do exemplo “Analisador de logs™,| 122
4.63 Resultado da execucdo do exemplo “Analisador defogs™) 123
[5.1 Formato geral de uma regra num arquivo makefile| 127
[5.2 Exemplo de arquivo no formato makefile| 128
.3 Exemplodeusodomake 129
[5.4 Somente os arquivos afetados pela alteracao de outro sao refeitos| 129
5.5 Uso de variaveis e comentarios num arquivo makefile| 130
[5.6 Arquivo configure.in para checar a existéncia da biblioteca ncurses .|. . 133
[0.7 Modelo usado na criacao do Makefile pelo script configure | 134
[5.8_Exemplo de verificacdo executada pelo configure] - - 135
5.9 Complilagao do programa que usa a biblioteca “ncurses” 135
[5.10 Arquivo gerado pelo autoheader| oL 136
[>5.11 Arquivo config.n gerado pelo configure | 136
[5.12 Exemplo de configure.in para uso do automake| 137
[>.13 Exemplo de Makefile.am para criacao do Makefile.in [... o 137
6.1 Exemplode arquivo SPecC| e 141
6.2 Arquivo de configuracao do rpm para uso de criptografia. 143
6.3 Mensagens relativas a assinatura de um pacote RPM sendo criado] 144
6.4 Verificacdo da integridade de pacotesRPM| 144
[/.1 Formato das linhas do arquivocrontab .| 146
[/.2 Exemplodeumarquivocrontab .| 146
[7.3 Utllizando Intervalos num arquivo crontab _.[. 147
[7.4 Tarefasparaocrontab | 147
7.5 Criandoumarquivocrontab | 147
[7.6 Arquivo /etc/crontab S 148
[/.7 Sintaxedocomandoat 149
[7.8 Usando o at atraves da entrada padrao.|. 150

(7.9 Exemplosdeusodoat. 150

LISTA DE TABELAS

2.1 Metacaracteres usadosnoBash, 20
2.2 Variavel mbient Istema. 20
2. r r redirecionamen ntr da) 21
[2.4 Formato geral do comando cut comaopgcao-C .|. 25
[2.5 Caracteres de Escape utiizadosemBash.| 32
[2.6 Variavels Incorporadas.] e 36
[2.7 Operadoresdestrings.). 38
.............................. 39
2.9 Operadores dé arquVS]. . . - - o o o o o oo 39
|2.1O OEeraQores !oglcos. 40
.11 OpcBes do comandoT€ad | . - « « v o o v e e 52
[3.1 OpcbOesusadascomsed. i 62
[3.2 Operadores de comparagao.] 73
B3 _Operadores I0gICOS,] - - -+« v v v e e e e e 73

4 Variavel Istem noAWK. 76
[3.5 FuncgoOes Aritméticas do Awk.| L L 78
[3.6 Funcoesdestring do AwK.| 78
[3.7 Instrucoes que provocam desvios nas estruturas de repeticao.| 80
[3.8 Caracteres Especiais em Expressées Requlares| 87
4.1 Caracteresde escapeemPerl| o L. 91
4.2 Operadores AritmetiCoS.| o i i e e 101
4.3 Operadoresdestring.] e 102
4.4 Atalnhos para operadores de atribuicao.|. L 103
4.5 Operadores Ldgicos no contexto de “curto-circuito™] 104
4.6 Operadores de comparacao. 105
4.7 Operadores de testede arquivo.l e 106
4.8 Definicdodehandles|, 111
4.9 Cadigos especiais de classes de caracteres] 117
4.10 Significado dos campos no arquivo de log do servidor Web] 118
[7.1 Valores possivels nos camposcrontab .| 146
[7.2 Opgdesdocomandocrontab 147
[7.3 Periodicidade dos diretérios contidos no arquivo /etc/crontab | 148
[74 OpcBesdocomandoat.] 149

[7/.5 Valores permitidos parao campotempo.l 150

1

INTRODUCAO

A rotina de trabalho de um administrador de sistemas e/ou de redes, além de exigir
muita responsabilidade, pode exigir também muito esforco para realizar as varias tarefas de
sua funcéo. Entre as principais tarefas, pode-se destacar a realizacdo de backups periodi-
cos de diversos tipos de arquivos, gerenciamento de contas de usuario, gerenciamento de
servicos de rede, policiamento da politica de uso e de seguranca da rede, instalacéo e atu-
alizacdo de pacotes, entre tantas outras. Geralmente séo tarefas repetitivas, metodicas e
gue exigem muita atencdo. Os sistemas UNIX e seus derivados possuem recursos nativos
para que essas tarefas sejam automatizadas, reduzindo-se assim, o trabalho do adminis-
trador, a chance de ocorrerem erros e esquecimentos, além de tornarem a execuc¢ao das
tarefas mais rapida.

O objetivo deste texto é ensinar ao leitor o uso basico de ferramentas poderosas para
automatizacdo de tarefas. Ao final, o leitor serd capaz de criar scripts e procedimentos
para automatizar tarefas. Nao é objetivo deste texto ensinar o leitor a configurar sistemas e
redes, nem légica de programacao. O autor pressupde que o leitor tenha conhecimento de
programacéao, no¢cdes basicas da sintaxe da linguagem de programacao C e conhecimento
mediano dos principais comandos usados em Linux.

Este texto encontra-se organizado da forma como se segue. O Capitulo 2 apresenta
as caracteristicas do shell para programacao de scripts. Sdo apresentados os conceitos de
shell e shell-script, além de citar os principais shells encontrados. O capitulo se concentra
na sintaxe de programacao utilizada por shell-scripts, de forma que o usuério podera adap-
tar comandos utilizados no prompt para serem executados de forma sistematica em scripts.
O capitulo encerra com a primeira parte de um exemplo pratico que abrange a maioria dos
conceitos estudados.

O Capitulo 3 aborda as ferramentas mais utilizadas para manipulagédo de textos, no
ambiente de administragédo de sistemas e/ou redes. Essas ferramentas possibilitam a ex-
tracdo rapida de informacgdes em arquivos de log, alteracéo e correcao de textos em varios
arquivos ao mesmo tempo, entre outra facilidades. E abordado o editor de textos orientado
por fluxo Sed, a linguagem de programacéo voltada para bancos de dados textuais Awk, e
0 uso de Expressdes Regulares para especificacdo de padrdes. Esse capitulo encerra com

14 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

a segunda parte de um exemplo pratico, iniciado no Capitulo 2, abrangendo conceitos dos
Capitulos 2 e 3.

No Capitulo 4 é mostrada a linguagem de programacao Perl, que também é muito
utilizada na administragdo de sistemas e redes. E uma linguagem interpretada com alto
nivel de abstracdo e portabilidade, e possui muitas facilidades para trabalhar com proces-
samento de textos. O capitulo apresenta os tipos de variaveis utilizadas, mostra a sintaxe
de programacéo, Expressdes Regulares no contexto de Perl e termina com um exemplo
pratico abrangendo a maioria dos recursos estudados.

O Capitulo 5 é de autoria de Bruno de Oliveira Schneider, professor do DCC da UFLA,
e foi retirado na integra de [Schneider (2003)], com a sua devida permissao. O capitulo
trata do uso de ferramentas de desenvolvimento que facilitam a configuracdo, compilacéo e
instalacio de programas a partir de seu codigo-fonte. E abordado o uso do programa make
e das autotools.

Também de autoria de Bruno de Oliveira Schneider, o texto do Capitulo 6 foi retirado
na integra de [Schneider (2003)], com sua devida permissdo. O capitulo aborda o uso
do Gerenciador de Pacotes Red Hat (RPM). O RPM é capaz de construir um pacote com
arquivos binarios, de configuracao, de dados e de documentacao que formam um aplicativo.
Ele também é capaz de instalar, desinstalar e atualizar pacotes no formato RPM, que é o
nome dado aos pacotes que estao no formato desse gerenciador, de forma simples e rapida.

O agendamento de tarefas é discutido no Capitulo 7, onde sdo mostrados os progra-
mas agendadores Cron e At. O capitulo explica a sintaxe usada nos arquivos de configura-
cao desses programas. Com eles € possivel definir uma data e horario para uma tarefa ser
executada, sem a necessidade da presenca do administrador de sistemas e/ou de redes.
Essas tarefas podem ser desde um backup periddico até uma atualizacdo do sistema em
um horario de pouco uso.

Herlon Ayres Camargo, autor do texto, natural de Barbacena/MG, é Engenheiro Ele-
tricista pela Universidade Federal de Sao Joao Del-Rei/MG (UFSJ), mestre em Engenharia
Elétrica pelo Centro de Pesquisa e Desenvolvimento em Engenharia Elétrica (CPDEE) da
Universidade Federal de Minas Gerais (UFMG). Foi professor do Centro Federal de Educa-
cao Tecnoldgica de Minas Gerais (CEFET-MG) de 1997 a 2002, e atualmente € professor
do Curso Superior de Tecnologia em Desenvolvimento de Sistemas Distribuidos e do Curso
Técnico em Informéatica da Escola Agrotécnica Federal de Barbacena/MG, desde 2003,
onde também desenvolve as atividades de administrador de redes e de suporte em Soft-
ware Livre. Trabalha com informatica desde 1991 e conheceu o Linux em setembro de 2000,
através da distribuicdo Conectiva Linux 5, onde se apaixonou pelo sistema e pela filosofia
de liberdade em software, fazendo com que abandonasse, definitivamente, seu diploma de
Engenheiro Eletricista para trabalhar exclusivamente com Linux e Redes de Computadores.

Introducao 15

O autor quer deixar claro os agradecimentos ao Professor Bruno de Oliveira Schneider,
pela gentileza de ter “emprestado” os contetidos dos Capitulos 5 e 6, para que pudessem
completar o objetivo do texto, que € a automacao de tarefas em sistemas Linux.

16

EDITORA - UFLA/FAEPE - Automacéao de Tarefas

2

SHELL-SCRIPT

2.1 INTRODUCAO

Este capitulo mostra como construir scripts para serem executados por um shell. Em
primeiro lugar, sdo definidos os conceitos de shell e shell-script. Em seguida, sao apresen-
tados alguns dos principais shells usados e algumas de suas caracteristicas para desenvol-
vimento de scripts. Sdo apresentados comandos usados no Linux que sdo muito Uteis em
shell-script. O capitulo se concentra no desenvolvimento de shell-scripts, mostrando sua
sintaxe e varios exemplos. No final do capitulo, € apresentado um exemplo pratico e real,
envolvendo a maioria dos recursos vistos neste capitulo.

Para mais informagdes sobre shell-script, o autor recomenda a leitura dos manuais dos
comandos usados no Bash, e também [Cooper (2005)], [Neves (2003)] e [Michael (2003)].
Muita informacéo avulsa também pode ser encontrada em [Jargas (2004)].

2.1.1 Shell

Shell € um interpretador de linha de comandos que tem como finalidade principal
aceitar os comandos digitados pelo usuario e traduzi-los para o kernel, atuando como uma
interface primaria entre o usuario e o kernel. O shell possui uma sintaxe prépria de alto
nivel, que permite a escrita de scripts com estruturas semelhantes as de linguagens de
programacdo, usando variaveis, estruturas condicionais e de repeticdo, leitura e escrita
em arquivos, operadores e fungdes. A Figura[2.1] mostra uma janela de terminal com um
prompt do shell esperando por comandos a serem digitados pelo usuario. Neste texto, 0s
exemplos exibem um prompt de comandos conforme a Figura [2.1] ou seja, [prompt]$
Este prompt pode variar dependendo da configuragcéo do seu sistema, podendo aparecer,
nessa posicao, outras informagodes.

2.1.2 Shell-Script

Um shell-script € um arquivo contendo varios comandos do shell e que sdo executa-
dos em sequiencia. Esse tipo de script € muito utilizado por administradores de sistemas e
de redes, sendo uma das ferramentas mais poderosas para automatizar tarefas em Linux.

18 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

prompt 1%]

Figura 2.1: Janela de terminal exibindo o shell.

Permite total interacéo com o sistema, e pode ser executado através da linha de comandos
ou chamado por outros scripts.

2.1.3 Principais Shells

Muitos shells foram desenvolvidos e alguns se sobressairam e sdo muito utilizados. A
seguir, sdo descritos os mais freqiientemente encontrados.

Bourne Shell

O Bourne Shell é o shell padrdo do Unix e foi escrito por Stephen Bourne da AT&T Bell
Labs. Chamado de “Standard Shell” (“Shell Padrédo”) é o shell mais utilizado porque muitos
sistemas Unix-Like o trazem também. E representado por sh. Um detalhe é importante:
€ muito comum ser encontrado o arquivo /bin/sh no Linux, mas geralmente € um link
simbalico para /bin/bash

Bourne-Again Shell

O Bourne-Again Shell é o shell padréo do Linux, conhecido como “Bash”, sendo um
aperfeicoamento do Bourne Shell. E representado por bash . Na maioria das distribuicbes
Linux fica localizado em /bin/bash

Shell-Script 19

Korn Shell

O Korn Shell é também um aperfeicoamento do Bourne Shell, tendo todos os seus
comandos reconhecidos. Por ser uma evolugéo do Bourne Shell, esta tendo grande aceita-
cao nos sistemas Unix, sendo um forte candidato a substitui-lo. Foi desenvolvido por David
Korn da AT&T Bell Labs e é representado por ksh .

C Shell

O C Shell é o mais utilizado nos ambientes Berkeley (BSD), tendo a sua sintaxe muito
parecida com a da linguagem C. Foi desenvolvido por Bill Joy da Berkeley University e tem
recursos superiores de programacao de shell. E representado por csh .

Tenex C Shell

O Tenex C Shell é um aprimoramento do C Shell e muito utilizado em sistemas Linux,
ficando atrés apenas do Bash. Possui a mesma sintaxe do C Shell com alguns comandos
a mais, e é representado por tcsh .

2.2 CARACTERISTICAS DO BASH PARA SHELL-SCRIPTS

Como observado na secédo anterior, o0 Bash € o shell padrdo do Linux, sendo assim,
as proximas secdes apresentam algumas caracteristicas do Bash em relacdo a elaboracéo
de shell-scripts.

2.2.1 Metacaracteres

Metacaracter, ou caracter coringa, € um caracter que possui um significado especial,
podendo representar um conjunto de caracteres. Os metacaracteres *, ? e [] , quando
encontrados, sdo substituidos por possiveis valores. A Tabela[2.1] resume o significado de
cada metacaracter, trazendo também alguns exemplos.

2.2.2 Variaveis de Ambiente e de Sistema

As variaveis de ambiente e de sistema séo variaveis definidas pelo proprio sistema e
fazem parte do ambiente em que se estéa trabalhando. Algumas podem ser modificadas pelo
préprio usuario, como por exemplo a variavel PATH mas a maioria € fixa. Elas podem ser
utilizadas dentro de shell-scripts para se obter informagdes do sistema e do préprio usuario.
A Tabela[2.2l mostra as principais e mais utilizadas variaveis de ambiente e de sistema.

20 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Tabela 2.1; Metacaracteres usados no Bash.

Metacaracter Descricdo

* Corresponde a qualquer string de zero ou mais caracteres, ex-
ceto um ponto (.) quando este € o primeiro caracter no nome de
um arquivo. Exemplo: var* combina com variavel , var0l1 ,
varanda , etc. O comando Is * combina com qualquer nome
de arquivo exceto os que comecam com ponto: combina com
relatorio , aviso.txt , mas ndo combina com .segredo

? Corresponde a um unico caracter qualquer. Exemplo: var? cor-
responde com vara , varl , varb , etc.

1 Corresponde a um Unico caracter entre 0s presentes no interior
dos colchetes. Um hifen pode definir um intervalo. Exemplo:
var[sgt] combina com vars , varg e vart ;var[0-9] com-
bina comvarO ,varl ,var2 ,...,var9 . Um sinal de exclamacéo
(") nointerior do par de colchetes significa qualquer valor exceto
0s que estiverem entre os colchetes. Exemplo: var[!abc] s6
ndo combina com vara , varb e varc .

Tabela 2.2: Variaveis de ambiente e de sistema.

Variavel Descricao
HOME Define o caminho completo do diretério home de um usuario.
SHELL Identifica o shell do usuario e a sua localizacgao.

LOGNAME Identifica o nome de login do usuario.

PATH Define o diretdrio em que o shell procura por comandos.
TERM Define o tipo de terminal que o usuario esta usando.
HOSTNAME Identifica o0 nome da maquina.

MAIL Define o endereco da caixa de correio do usuario.

PWD Identifica o diretdrio corrente.

2.2.3 Redirecionamento de Entrada e Saida

Por default, Bash considera o teclado como entrada padréo, e o monitor de video
como saida padrdo. Determinados comandos exigem entrada e saida de dados. Se nada

Shell-Script 21

€ especificado, esses comandos esperam que os dados sejam digitados no teclado e os
resultados serdo mostrados na tela.

Em alguns casos, € interessante gravar, num arquivo, os resultados gerados por um
comando. Para isso, deve-se informar ao Bash que a saida de dados sera gravada num
arquivo. Outra situacao seria a necessidade de fornecer uma grande quantidade de dados
para um comando. Esses dados ja poderiam estar gravados em um arquivo. Nao é neces-
sario que sejam digitados novamente no teclado, basta definir que a entrada do comando
sera feita através de um arquivo.

Pode acontecer também que um comando gere uma saida, e esta saida servira de
entrada para outro comando. Além disso tudo, se houver algum erro, pode-se gravar a
mensagem de erro em um arquivo para uma analise posterior. O Bash é bastante flexivel
em relacédo a entradas e saidas de comandos e programas.

A Tabela [2.3] mostra os simbolos usados para fazer o redirecionamento de entrada e
saida de dados. Na Figura[2.2]h& alguns exemplos. Observe a saida /dev/null : tudo que
for direcionado a ela ird “sumir”, ou seja, ndo sera gravado em arquivo algum, nem exibido
na tela.

Tabela 2.3: Caracteres de redirecionamento de entrada e saida.

Caracter Descricao

> Redireciona a saida de um comando para um arquivo. Se o ar-
quivo ndo existir, ele sera criado. Se ja existir, seu conteudo sera
apagado e sera gravado apenas a saida do comando.

>> Redireciona a saida de um comando para um arquivo, incluindo-
o no final do arquivo. Nao apaga o conteudo existente do arquivo.
Se 0 arquivo nao existir entdo sera criado.

2> Redireciona as mensagens de erro geradas por um comando
para um arquivo. O arquivo sera criado mesmo se ndo houver
erro algum.

< Redireciona a entrada de um comando de forma que ela venha

de um arquivo em vez do terminal.

<< Indica ao shell que o escopo de um comando comeca na linha
seguinte e termina quando encontrar uma linha cujo contetdo
seja 0 mesmo que vem apos o sinal <<.

Conhecido como pipe, redireciona a saida de um comando para
a entrada de outro.

22 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$ Is -l > conteudo.txt

[prompt]$ cat conteudo.txt

total 12

-rw-rw-r-- 1 herlon herlon 0 2005-02-27 22:41 conteudo.txt
-rwxrwxr-x 1 herlon herlon 60 2005-02-27 17:27 olamundo.sh
-rwxrwxr-x 1 herlon herlon 76 2005-02-13 11:12 olamundo2.sh
-rw-rw-r-- 1 herlon herlon 35 2005-02-27 18:28 res_olamundo.sh

[prompt]$ echo "Esta linha estd no final do arquivo." >> conteudo.txt
[prompt]$ cat conteudo.txt

total 12

-rw-rw-r-- 1 herlon herlon 0 2005-02-27 22:41 conteudo.txt
-rwxrwxr-x 1 herlon herlon 60 2005-02-27 17:27 olamundo.sh
-rwxrwxr-x 1 herlon herlon 76 2005-02-13 11:12 olamundo2.sh
-rw-rw-r-- 1 herlon herlon 35 2005-02-27 18:28 res_olamundo.sh
Esta linha estd no final do arquivo.

[prompt]$ Is nao_existe 2> erro.txt
[prompt]$ cat erro.txt
Is: nao_existe: Arquivo ou diretério ndo encontrado

[prompt]$ Is - mensagem
-rw-rw-r-- 1 herlon herlon 30 2005-02-27 22:51 mensagem
[prompt]$ mail herlon < mensagem

[prompt]$ mail herlon << FIM
> Qi Herlon,

> Como vai? Tudo bem?

> FIM

[prompt]$

[prompt]$ cat alunos | sort | Ip

[prompt]$ rm naoexiste

rm: cannot Istat ‘naoexiste’: Arquivo ou diretério ndo encontrado
[prompt]$ rm naoexiste 2> /dev/null

[prompt]$

Figura 2.2: Exemplos de uso dos caracteres de redirecionamento.

2.3 COMANDOS UTEIS

Uma das grandes dificuldades do iniciante em programacéao de shell-scripts € a falta
de conhecimento de alguns comandos do Linux, e suas respectivas listas de opcoes, que
podem simplificar a elaboragcédo de um script. Esta secao apresenta os comandos do Linux
mais utilizados na elaboracdo de um shell-script.

Shell-Script 23

2.3.1 qgrep, egrep e fgrep

Grep — Global Regular Expression Print tem como principal objetivo localizar cadeias
de caracteres dentro de um texto previamente definido. Esse texto pode ser o conteudo
de um arquivo, a saida de um programa ou a entrada padréo. A cadeia de caracteres é
definida por uma Expressao Regula.

Na Figura € mostrado um exemplo onde grep procura pela cadeia de caracte-
res “Linux” dentro do arquivo meutexto.txt . O comando devolve as linhas inteiras que
contém a cadeia procurada. No exemplo da Figura [2.4] grep procura pela cadeia “livre”
dentro de todos os arquivos com extensado .txt no diretdrio corrente. Ele retorna o nome
do arquivo seguido pela linha que contém a cadeia procurada.

[prompt]$ grep Linux meutexto.txt

Linux é um sistema operacional multiusuario e
O Linux apresenta interatividade com outros
Linux € um software de livre distribuigdo, ou

Figura 2.3: Exemplo do grep procurando string dentro de um arquivo especificado.

[prompt]$ grep livre *.txt
meutexto.ixt:Linux é um software de livre distribuicdo, ou
teste.txt:Uso o software livre por ser

Figura 2.4: Exemplo do grep procurando string dentro de varios arquivos.

No exemplo da Figura [2.5| grep recebe a saida do comando ps aux e retorna as
linhas que contém a cadeia “kile”.

[prompt]$ ps aux | grep kile
herlon 3443 1.4 5.4 41580 27336 ? S 09:17 0:20 kile
herlon 3512 0.0 0.1 2916 628 pts/2 R 09:40 0:00 grep kile

Figura 2.5: Exemplo do grep procurando string em saida de comando.

As opcbes comuns mais utilizadas com grep sao: -C que retorna apenas a quanti-
dade de linhas encontradas; - que retorna apenas 0s homes dos arquivos que contém a
cadeia de caracteres procurada; e -v que retorna a entrada completa exceto as linhas onde
a ocorréncia foi encontrada. Os exemplos da Figura [2.6] mostram o uso das opcdes -c e
-l . No exemplo da Figura[2.7], removeu-se o usudrio “fulano” dos arquivos /etc/passwd
e /etc/shadow

LExpressdes Regulares serédo estudadas no Capl'tulo

24 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$ grep -c Linux meutexto.txt
3

[prompt]$ grep -l livre *.txt
meutexto.txt

teste.txt

Figura 2.6: Exemplo de uso do grep com as opc¢des -c e -l

[prompt]# grep -v fulano /etc/passwd > /etc/passwd.new
[prompt]# grep -v fulano /etc/shadow > /etc/shadow.new

Figura 2.7: Exemplo de uso do grep com a opgéao -v .

Da mesma familia do grep , hd ainda o egrep — Extended grep e o fgrep — Fast grep.
O egrep € mais poderoso que o grep , porém mais lento, sendo utilizado com Expressdes
Regulares mais complexas. O fgrep é mais rapido que o grep mas néo trabalha com
Expressdes Regulares.

2.3.2 wc

O comando wc, quando usado com a opc¢ao -l , conta o numero de linhas da ocorrén-
cia. Com a opg¢do -c , conta 0 niumero de caracteres e com -w, 0 niumero de palavras. Um
exemplo de uso do wc pode ser visto na Figura 2.8/ onde séo contados o nimero de linhas,
caracteres e palavras do texto gravado no arquivo meutexto.txt

(1
[prompt]$ cat meutexto.txt | wec -I

8
[prompt]$ cat meutexto.txt | wc -c

363

[prompt]$ cat meutexto.txt | wc -w

54

- J
Figura 2.8: Exemplo de uso do comando wc.

2.3.3 cut

O comando cut € usado para extrair pedacos de dados de um arquivo ou da saida
redirecionada de um comando. Geralmente, é usado com as opgbes -c ,-f e-d.

A opcao -c especifica uma porgéo que se deseja cortar atraves de posi¢coes de carac-
teres. A Tabela mostra detalhes do uso da opgéo -c , e a Figura [2.9 mostra exemplos
de uso do cut com a opgao -c .

Nem todos os arquivos e saidas de comando redirecionadas possuem campos de
dados em posicles fixas em relagcdo a namero de caracteres. A opcao -f serve para

Shell-Script 25

Tabela 2.4: Formato geral do comando cut com a opgéo -C .

Comando Descricao

cut -c posicao [arquivo] Retorna todos os caracteres de posicao.

cut -c pinicio - pfinal [arquivo] Retorna todos os caracteres entre pinicio e
pfinal.

cut -c pinicio - [arquivo] Retorna todos os caracteres apods pinicio.

cut -c- pfinal [arquivo] Retorna todos os caracteres do inicio até
pfinal.

especificar os campos que serdo extraidos. As regras de delimitagcdo sdo as mesmas da
opcao -c . Mas a opcgéo -f sozinha so fara efeito se o separador de campos for o caracter
<TAB>., Sendo outro caracter diferente é necessario o uso da opcédo -d para especificar qual
€ o caracter de separacao. Se o caracter de separacao for um caracter que o shell possa
interpretar como metacaracter, € necessario que este venham entre aspas ou apéstrofos.
A Figura [2.10|mostra um exemplo de uso do cut com as opcdes -f e -d .

2.3.4 paste

Ao contrario do cut que separa campos, 0 paste permite juntar campos de diferentes
arquivos. Entre os campos, paste usa o caracter <TAB> para fazer a separagdo. A opgao
-d pode definir qual sera o caracter delimitador. A Figura[2.11 mostra um exemplo de uso
do comando paste .

2.3.5 head

O comando head é geralmente usado na forma head -n , onde n é um namero que
representa as “n” primeiras linhas de um arquivo ou de uma saida de comando redirecio-
nada. Um exemplo de seu uso é mostrado na Figura(2.12,

2.3.6 tall

O comando tail é geralmente usado na formatail -n , funcionando de forma inversa
a head, retornando as “n” ultimas linhas de um arquivo ou de uma saida de comando
redirecionada. Um exemplo pode ser visto na Figura[2.13|

2.3.7 expr

O comando expr trabalha com express6es matematicas simples e somente nimeros
inteiros. Permite, também, manipulagéo de strings, mas com recursos limitados. Exemplos
de operacdes matematicas com expr podem ser vistos na Figura [2.14] Neste texto, o

26 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$ Is -l

-rw-rw-r-- 1 herlon herlon 292 2005-02-27 22:43 conteudo.txt
drwxrwxr-x 2 herlon herlon 4096 2005-03-01 10:46 erro
-rw-rw-r-- 1 herlon herlon 363 2005-03-01 09:23 meutexto.txt
-rw-rw-r-- 1 herlon herlon 47 2005-03-01 09:58 teste.txt
drwxrwxr-x 2 herlon herlon 4096 2005-03-01 10:46 tmp

[prompt]$ Is -I | cut -c1

[prompt]$ls -l | cut -c8-10
[--
r-x
[--
[--
r-x

[prompt]$ls -l | cut -c33-
2005-02-27 22:43 conteudo.txt
2005-03-01 10:46 erro
2005-03-01 09:23 meutexto.txt
2005-03-01 09:58 teste.txt
2005-03-01 10:46 tmp

[prompt]$ls -l | cut -c-10
-rW-rw-r--

drwxrwxr-x

-FW-rw-r--

-FW-rw-r--

drwxrwxr-x
. J

Figura 2.9: Exemplos de uso do cut com a opg¢éao -c .

tratamento de strings é deixado com as ferramentas Sed e Awk por serem mais completas
e eficientes?

2.3.8 bc

Para expressfes numéricas mais complexas, ou com casas decimais, usa-se a cal-
culadora bc. Pode-se também ser usada para conversao de base numérica. Exemplos de
uso sao mostrados na Figura [2.15]

2Sed e Awk s#o estudadas no Capitulo

Shell-Script 27

[prompt]$ cat /etc/passwd | cut -f5 -d:
root

bin

daemon

adm

Herlon Camargo
Matheus Camargo
Proftpd user (system)
Clam Anti Virus Checker

Figura 2.10: Exemplo de uso do cut com as opgBes -f e -d .

(1
[prompt]$cat /etc/passwd

herlon:x:500:500:Herlon Camargo:/home/herlon:/bin/bash
matheus:x:501:501:Matheus Camargo:/home/matheus:/bin/bash
proftpd:x:101:103:Proftpd user (system):/srv/ftp:/bin/false
httpd:x:502:502::/home/httpd:/bin/bash
postgres:x:503:503::/home/postgres:/bin/bash
teste:x:504:504::/homef/teste:/bin/bash
gdm:x:42:42::/home/gdm:/bin/bash

clamav:x:43:43:Clam Anti Virus Checker:/var/lib/clamav:/bin/false

[prompt]$ cat /etc/passwd | cut -f1 -d: > /tmp/logins
[prompt]$ cat /etc/passwd | cut -f7 -d: > /tmp/shells

[prompt]$ paste /tmp/logins /tmp/shells
herlon /bin/bash

matheus /bin/bash

proftpd /bin/false

httpd /bin/bash

postgres /bin/bash
teste /bin/bash
gdm /bin/bash

clamav /bin/false

Figura 2.11: Exemplo de uso do comando paste .

2.3.9 sort

O comando sort , por padrédo, ordena os elementos de um arquivo, ou de uma saida
de comando redirecionada, em ordem lexicografica. Ou seja, os elementos sdo ordenados
de acordo com o valor numérico do codigo ASCII utilizado para representar, na memoria,

28 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$ cat /etc/passwd | head -3
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/shin:

Figura 2.12: Exemplo de uso do comando head .

[prompt]$ cat /etc/passwd | tail -3
teste:x:504:504::/home/teste:/bin/bash
gdm:x:42:42::/home/gdm:/bin/bash

clamav:x:43:43:Clam Anti Virus Checker:/var/lib/clamav:/bin/false

Figura 2.13: Exemplo de uso do comando tail

[prompt]$ expr 3+4
3+4

[prompt]$ expr 3 + 4
7

[prompt]$ expr 5 - 2
3

[prompt]$ expr 10 / 5
2

[prompt]$ expr 2 * 3
expr: erro de sintaxe
[prompt]$ expr 2 * 3
6

-

Figura 2.14: Exemplos de uso do comando expr .

r

[prompt]$ echo "272 + 3" | bc

7

[prompt]$ echo "((2+1)*2 + 11)/3" | bc

6

[prompt]$ echo "scale=3; ((2+1)"2 + 11)/3" | bc
6.666

Figura 2.15: Exemplo de uso do comando bc.

0s caracteres que compdem uma string. As strings séo ordenadas como em um dicionario,
mas a ordenacdo de numeros € falha: por exemplo, 100 € considerado menor que 99, e
portanto seria colocado antes. Para uma ordenagdo numeérica perfeita, usa-se a opgao -n .
A Figura [2.16] possui um exemplo com 0 seu uso.

Shell-Script 29

[prompt]$ cat /etc/passwd | cut -f1 -d: | sort
adm

bin

clamav

daemon

ftp

teste

uucp

www
- J

Figura 2.16: Exemplo de uso do comando sort

2.3.10 uniq

O comando unig remove as linhas duplicadas de um arquivo ou de uma saida de
comando redirecionada. E necesséario que o arquivo esteja ordenado para que as linhas
duplicadas sejam consecutivas dentro do arquivo. Quando usado com a op¢éo -d retorna
somente as linhas duplicadas. A Figura[2.17|mostra um exemplo do uso.

(I
[prompt]$ who

matheus tty2 Mar 1 12:13
root tty3 Mar 1 12:13
matheus tty4 Mar 1 12:13
herlon :0 Mar 1 08:46
herlon pts/O Mar 1 08:46
herlon pts/1 Mar 1 09:17
herlon pts/2 Mar 1 09:20
herlon pts/3 Mar 1 09:24
[prompt]$ who | cut -f1 -d" " | uniq
matheus

root

matheus

herlon

[prompt]$ who | cut -f1 -d" " | sort | uniq
herlon

matheus

root

Figura 2.17: Exemplo de uso do comando unig.

30 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

2.4 CARACTERISTICAS INICIAIS DO SHELL-SCRIPT

As distribuicdes Linux trazem como padrédo o shell Bash, geralmente instalado no
diretorio /bin/bash . O shell aceita os comandos especificados num script, interpreta-os e
faz com que o sistema operacional execute os comandos na maneira e na ordem que foram
especificados. Um shell-script € uma cole¢cdo de um ou mais comandos em um arquivo.
Para executar esse script basta que se digite 0 nome do arquivo na linha de comandos.

Um shell-script aceita, além de todos os comandos que vocé poderia digitar na linha
de comandos, variaveis de ambiente e sistema, variaveis definidas pelo usuario, estruturas
de controle de fluxo, saidas formatadas, acesso a banco de dados, e muitos outros recursos.
Possuindo vérias caracteristicas e semelhangas com linguagens de programacao, permite a
elaboracéao de scripts complexos e eficientes para a administracéo de sistemas. Nas secdes
seguintes, sdo apresentados varios recursos para elaboracdo de shell-scripts usando a
sintaxe do Bash.

2.4.1 O Primeiro Script

O primeiro script sera o tradicional “Ola Mundo!”, cujo codigo é apresentado na Fi-

gura|2.18|

#!/bin/bash

echo "Ola _Mundo!" # Imprime uma frase.

Figura 2.18: Cddigo-fonte do script olamundo.sh

A extensado nos shell-scripts é optativa. Recomenda-se utilizar a extensdo .sh para
gue o leitor possa facilmente identificar que tipo de arquivo esté lidando, sem precisar abri-lo
ou visualiza-lo. Outras extensfes poderiam ser colocadas no lugar de .sh , como por exem-
plo .bash ou outra qualquer. O script da Figura [2.18]foi nomeado como olamundo.sh

Pode-se executar esse script de duas maneiras. A primeira, seria dar permissao de
execugdo ao arquivo e depois executa-lo diretamente, como pode ser visto na Figura[2.19
A permissao de execucédo serd dada apenas uma vez, antes da primeira execugao do script.

[prompt]$ chmod +x olamundo.sh
[prompt]$./olamundo.sh
Ola Mundo!

Figura 2.19: Execucéo do script olamundo.sh de forma direta.

Shell-Script 31

A segunda maneira seria através da chamada direta do shell Bash, como na Fi-
gura|2.20|, passando o nome do arquivo como parametro. Dessa forma, ndo ha necessidade
do script ter permisséo para execucao.

Ola Mundo!

< —

[prompt]$ /bin/bash olamundo.sh }

Figura 2.20: Execucdo do script olamundo.sh através da chamada do interpretador.

Pelas Figuras [2.18], [2.19 e [2.20] o leitor deve observar que o autor usou dois tipos
diferentes de molduras nas figuras: uma para codigo e outra para o resultado da execuc¢éao
do cédigo. Na moldura de cddigos, os espacos em branco serdo marcados com um caracter
parecendo o caracter “traco-baixo”, para alertar o leitor sobre a ocorréncia de espagos em
branco.

Esse primeiro script fornece nog¢des da sintaxe usada em shell-scripts desenvolvidos
em Bash. A primeira linha do script da Figura [2.18]informa ao sistema qual o interpretador
que sera chamado para executar esse script, e qual a sua Iocalizagé. Na maioria dos
sistemas Linux, o Bash est& localizado no diretério /bin . Deve-se ajustar essa primeira
linha de acordo com o sistema onde o script serd executado. A primeira linha, dessa forma,
se torna necesséria e obrigatoria apenas se o script for executado conforme a primeira
maneira descrita anteriormente, ou seja, com permissao de execucao e chamado direta-
mente na linha de comando. Quando o script é executado da segunda maneira, ou seja, 0
nome do interpretador shell é invocado na linha de comando, essa primeira linha do script
passa a ser desnecessaria, pois ja foi dito ao sistema quem interpretara o script. Indepen-
dentemente da maneira utilizada para execucao do script, € de bom costume que se deixe
sempre a primeira linha indicando o caminho do interpretador que sera utilizado. Assim, o
script podera ser executado nas duas maneiras sem necessidade de alteracao do cédigo.

A sintaxe de Bash é muito semelhante a de outros shells, e até mesmo, em alguns
aspectos, da sintaxe de Perl (veja Capitulo [4). Comentarios em Bash devem ser feitos
através do caracter “#”. Assim, todo o conteudo que vier depois desse caracter até o final
da linha sera ignorado pelo interpretador (com excec¢ao da primeira linha). Para comentar
vérias linhas seguidas, € necessario que se use o sinal “#” na frente de cada linha.

O comando utilizado para mostrar informacdes € o echo . Essas informacdes podem
estar entre aspas duplas " (ver Se¢éo[2.4.2), aspas simples’ (ver Se¢do[2.4.3) e/ou apbs-
trofo invertido * (ver Secédo [2.4.4). Pode-se usar “caracter de escape” conforme é usado
na linguagem C. Para isso, é necessario passar o parametro -e para o comando echo. A
Figura mostra o script olamundo.sh escrito usando caracteres de escape, e 0 seu

3para detalhes sobre a necessidade do uso de “#! ” veja [Budlong (1999)].

32 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

resultado € apresentado na Figura [2.22, A Tabela mostra alguns dos caracteres de
escape mais utilizados em Bash.

#!/bin/bash

echo -e "\nOla\ttMundo\t\thn" # Imprime uma frase.

Figura 2.21: Usando caracteres de escape com echo.

[prompt]$./olamundo2.sh

ola Mundo !

[prompt]$

Figura 2.22: Execucao do script olamundo.sh com caracteres de escape.

Tabela 2.5. Caracteres de Escape utilizados em Bash.

Caracter Descricao

\a Aviso sonoro.

\C Ignora nova linha.

\f Mudanca de pagina.

\n Mudanca de linha.

\t Tabulacdo horizontal.

\num Caracter octal cujo codigo ASCII é num.

Pode-se observar nas Figuras e que, em Bash, ndo € necessario que as
linhas do shell-script terminem com ponto-e-virgula, ao contrario de linguagens como C e
Perl.

2.4.2 Aspas Duplas— (")

Normalmente, as aspas duplas sdo usadas para exibicdo de strings. Se uma string
possuir espacos, pode-se cerca-la com aspas duplas () de forma que o shell a interprete
como sendo uma entidade s6. Quando se coloca um caracter especial entre aspas duplas,
o Bash ignora o seu significado, exceto os caracteres $ (dolar), * (apostrofo invertido) e
\ (barra invertida). Por causa disso, o Bash interpretara qualquer variavel presente numa
string que estiver entre aspas duplas (mais detalhes sobre variaveis sdo mostrados na
Secéo[2.5). Exemplos do uso de aspas duplas podem ser vistos na Figura[2.23]

Shell-Script 33

[prompt]$ echo Inseri espacos nesta frase
Inseri espagos nesta frase

[prompt]$ echo "Inseri espacos nesta frase"
Inseri espacos nesta frase

Figura 2.23: Usando aspas duplas.

2.4.3 Aspas Simples ou Apéstrofo — (')

Pode-se cercar uma string com aspas simples para impedir que o Bash interprete as
variaveis citadas em seu interior. As aspas simples ignoram todos os caracteres, inclusive
os caracteres $ e \. Um exemplo pode ser visto na Figura[2.24]

[prompt]$ echo "$HOME é o meu diretério padrdo.”
/home/herlon é o meu diretério padrao.

[prompt]$ echo '$HOME € o meu diretério padréo.’
$HOME ¢é o meu diretério padréo.

Figura 2.24. Usando aspas simples.

2.4.4 Apobstrofo Invertido — (*)

O apéstrofo invertido serve para indicar ao Bash que execute a string delimitada pelo
apostrofo invertido. Normalmente é usado quando se deseja armazenar em uma variavel
o resultado da execucdo de um comando ou quando se deseja mostrar na tela uma frase,
tendo embutida nela o resultado de um comando. A Figura[2.25 mostra um exemplo de uso
do apdstrofo invertido.

[prompt]$ echo "O nome deste computador é ‘uname -n'."
O nome deste computador € donald.minhacasa.

Figura 2.25: Usando apdstrofo invertido.

2.4.5 Barra Invertida — ()

A barra invertida pode ser usada antes de um caracter especial para impedir que o
Bash o interprete. E importante salientar que o Bash ignora um, e somente um, carater
apos a barra invertida. Se colocada no final da linha, o Bash interpretard como um aviso
de continuagéo de linha, pois a barra invertida anularia 0 <ENTER>digitado ap0s a mesma.
Mas, se entre a barra invertida e o <ENTER>houver algum caracter extra, como um ou mais
espagos em branco, talvez o resultado ndo seja o esperado. Na Figura[2.26/é mostrado um
exemplo de uso da barra invertida.

34 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$ echo "O nome deste computador é \"“uname -n‘\"."
O nome deste computador é "donald.minhacasa".

Figura 2.26: Usando a barra invertida

2.4.6 Parénteses

Tem-se optado por usar uma constru¢éo nova no lugar do apdéstrofo invertido. E bom
frisar que nem todos os shells aceitam essa configuracdo, mas o Bash ja permite trabalhar
com ela perfeitamente. Um exemplo é mostrado na Figura . E 0 mesmo exemplo da
Figura[2.25s6 que trocando ‘uname -n‘ por $(uname -n)

[prompt]$ echo "O nome deste computador é $(uname -n)."
O nome deste computador € donald.minhacasa.

Figura 2.27: Usando parénteses.

2.5 VARIAVEIS

A programacdo de scripts em Bash suporta trés tipos de variaveis: variaveis de am-
biente, variaveis de sistema (estas duas sdo comentadas na Sec¢édo [2.2.2) e variaveis de
usuario.

2.5.1 Variaveis de Usuario

Variaveis de usuario sao definidas pelo programador quando o script é escrito, e po-
dem ser usadas e modificadas normalmente. Uma das maiores diferencas entre a progra-
macédo em Bash e outras linguagens de programacéao é que, em Bash, ndo ha necessidade
de se declarar as variaveis antes de seu primeiro uso. Ou seja, ndo é necessario especificar
se a variavel € um numero ou uma string, por exemplo.

O nome de uma variavel é iniciado por uma letra ou um sublinhado (), seguido ou
nao por quaisquer caracteres alfanumeéricos ou caracter sublinhado.

2.5.2 Usando Variaveis

O script olamundo.sh serd modificado inserindo-se uma variavel. Essa variavel re-
cebera um valor, que nesse caso sera uma string, e posteriormente sera chamada para
devolver esse valor numa instrucao. A variavel frase receberd a string “Ola Mundo!”. Para
gue a variavel possa retornar seu valor, necessita-se usar o simbolo $ antes de seu nome.
A Figura mostra o script olamundo.sh reescrito.

Shell-Script 35

#!/bin/bash
frase= "Ola _Mundo!" # Variavel recebe um valor.
echo $frase # Imprime o valor da variavel.

Figura 2.28: Exemplo olamundo.sh usando uma variavel.

Deve-se notar que, em Bash, na atribuicdo de valor a uma varidvel ndo poderao existir
espacos em branco ao redor do sinal de atribuicdo “=". As formas de defini¢cdo de variaveis
mostradas na Figura sao erradas. Nesses casos, Bash pode interpretar o nome da
variavel como sendo o nome de um comando do sistema, e o contetdo de sua atribuicéo
como parametro desse suposto comando. A forma correta de se definir uma variavel é
mostrada na Figura[2.30]

[prompt]$ a = 2
bash: a: command not found

[prompt]$ a= 2
bash: 2: command not found

[prompt]$ a =2

bash: a: command not found

- J
Figura 2.29: Formas erradas se definir uma variavel.

[prompt]$ a=2

[prompt]$

Figura 2.30: Forma correta de se definir uma variavel.

A Figura mostra o uso de variaveis juntamente com aspas duplas, aspas simples
e apostrofo invertido.

2.5.3 Variaveis Incorporadas

As variaveis incorporadas séo variaveis especiais fornecidas pelo Linux, que podem
ser usadas para se obter informacfes importantes dentro do script. A Tabela mostra
essas variaveis com seus significados, e as Figuras e mostram um exemplo de
uso dentro de um script.

A Figura mostra o script incorporadas.sh recebendo trés parametros. O
nome do script (arquivo) pode ser recuperado pela variavel $0. O primeiro parametro pode
ser recuperado pela variavel $1, o segundo, pela variavel $2, o terceiro, por $3, e assim

36 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$ a="Uma string"
[prompt]$ echo $a
Uma string

[prompt]$ b="expr 2 + 3’
[prompt]$ echo $b
expr 2 + 3

[prompt]$ c='expr 2 + 3’
[prompt]$ echo $c

5
N\ J
Figura 2.31: Usando aspas e apéstrofos na definicdo de variaveis.
Tabela 2.6: Variaveis Incorporadas.
Variavel Descricao
$0 Contém o nome do script.
$1, $2, ..., $9 Contém, respectivamente, o primeiro, segundo, ..., nono para-
metros passados na linha de comandos.
$# Contém a quantidade de parametros passados.
$* Vetor que contém todos os parametros passados.
$? Cdbdigo de retorno do ultimo comando ou programa executado
dentro do shell-script.
#!/bin/bash

echo "O_nome_do_script _é: $0"

echo "O_primeiro _parametro _é: _$1"

echo "O_segundo _parametro _é: $2"

echo "A_quantidade _de_parametros _é: $#"
echo "O_vetor _de_paramteros _é: _$*"

Figura 2.32: Script utilizando variaveis incorporadas.

sucessivamente até o nono parametro $9. A partir do décimo parametro é necessario o uso
de chave, como, por exemplo ${10} , ${11} , ${12} , e assim em diante. Com as varia-
veis incorporadas, com excecao de $?, podemos obter informacdes do que foi passado na
linha de comando.

“Pode-se, também, usar as chaves com nomes de variaveis, como por exemplo ${nome} em vez de
$nome.

Shell-Script 37

[prompt]$./incorporadas.sh gato cachorro cavalo
O nome do script é: ./incorporadas.sh

O primeiro parametro é: gato

O segundo parametro é: cachorro

A quantidade de pardmetros é: 3

O vetor de pardmteros é: gato cachorro cavalo
- J

Figura 2.33: Varidveis incorporadas em acéo.

Ha um comando chamado shift que elimina o primeiro argumento dos parametros,
deixando $0 intacto, e fazendo com que $1 receba o valor de $2, $2 receba o valor de $3,
e assim sucessivamente. A Figura[2.34) mostra um script usando o shift , e seu resultado
é apresentado na Figura[2.35

#!/bin/bash

echo "O_primeiro _parametro _é: _$1"
shift # Elimina o primeiro parametro e
echo "Agora _o_primeiro _parametro _é: $1" # coloca o segundo no lugar do primeiro.

[[

Figura 2.34: Script usando shift

[prompt]$./troca.sh fulano ciclano beltrano
O primeiro parametro é: fulano
Agora o primeiro parametro é: ciclano

Figura 2.35: Resultado do script usando shift

2.6 OPERADORES

Nesta secdo sédo apresentados alguns dos principais operadores usados em Bash.
Eles estéo relacionados & comparacéo de dois ou mais argumentos, e foram divididos con-
forme os dados que sao trabalhados.

Para se fazer a comparagdo em Bash, utiliza-se o comando test . A sua sintaxe €
aceita de duas formas, com mostrada na Figura [2.36] A segunda forma é mais recente e
mais facil de se entender. Mas, atencdo para o fato de que € necessario haver um espaco
em branco apds o primeiro colchete ([) e um espaco em branco antes do ultimo colchete
(1), conforme mostrado na Figura[2.36

38 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

test expressédo # Formato comum.

[expresséo] # Formato recente.

Figura 2.36: Uso do comando test

2.6.1 Operadores de String

A Tabela mostra 0s operadores mais usados para comparar duas expressoes
constituidas por stringslﬂ Na Figura sdo mostrados alguns exemplos de uso desses
operadores.

Tabela 2.7: Operadores de strings.

Operador Descricao
= Verifica se duas strings séo iguais.

I= Verifica de duas strings séo diferentes.

-n Verifica se a string ndo é vazia.
-Z Verifica se a string € vazia.
(1
test -n s1 # Retorna verdadeiro se o comprimento de sl é maior que zero.
test -z s3 # Retorna verdadeiro se o comprimento de s3 é zero.
[s1 = s2] # Retorna verdadeiro se a string s1 for igual a string s2
k[sl 1= s2] # Retorna verdadeiro se a string sl for diferente da string s2.

Figura 2.37: Exemplo dos operadores de string.

2.6.2 Operadores de Numeros

Os operadores mostrados na Tabela 2.8/ séo usados para comparar dois nimeros. Na
Figura[2.38|séo mostrados alguns exemplos de uso desses operadores.

Os operadores >, <, >= e <= para fazerem o efeito esperado com numeros, deverao
fazer parte de expressdes que estejam entre parénteses duplos. Se estiverem dentro de
colchetes simples ou colchetes duplos, usardao ordem alfabética.

5E também possivel usar os operadores >, <, >= e <= para comparacao lexicografica, mas para isso é
recomendavel usar Sed, Awk (explicados no Capl'tulo ou Perl (explicado no Capitulo.

Shell-Script

39

Tabela 2.8: Operadores Numéricos.

Operador Descricao

-eq ou= Verifica se dois niumeros sdo iguais.

-ne ou != Verifica se dois numeros séo diferentes.

-gt ou> \Verifica se um nimero é maior que outro.

-t ou< Verifica se um nimero é menor que outro.

-ge ou >= Verifica se um numero € maior ou igual a outro.
-le ou <= Verifica se um nimero é menor ou igual a outro.

[N1 = n2]

[n1 1= n2]

[n1 -gt n2]

[N1 -le n2]

Verdadeiro se nl igual a n2.

Verdadeiro se nl diferente de n2.

Verdadeiro se nl maior que n2.

Verdadeiro se nl menor ou igual a n2.

Figura 2.38: Exemplo dos operadores de nimeros.

2.6.3 Operadores de Arquivos

Os operadores mostrados na Tabela[2.9 podem ser usados para se obter informagoes
sobre arquivos. Na Figura s&o mostrados alguns exemplos de uso desses operadores.

Tabela 2.9: Operadores de arquivos.

Operador Descricao

-f Verifica se é um arquivo regular.

-d Verifica se € um diretorio.

-r Verifica se o0 arquivo tem permisséo de leitura.

-w Verifica se 0 arquivo tem permisséo de escrita.

-X Verifica se 0 arquivo tem permisséo de execucao.

-S Verifica se 0 nome do arquivo tem um tamanho maior que zero.
-u Verifica se o bit SUID esta ativo.

-0 Verifica se o bit SGID esta ativo.

-k Verifica se o sticky bit esta ativo.

40 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[-f "arquivol"] # Verdadeiro se "arquivol" for um arquivo regular.
[-d "diretoriol"] # Verdadeiro se "diretoriol" for um diretorio.
[-w "arquivol"] # Verdadeiro se "arquivol" tiver permissdo de escrita.

Figura 2.39: Exemplo dos operadores de arquivo.

2.6.4 Operadores Légicos

Os operadores mostrados na Tabela sdo usados para comparar expressoes
usando as regras da légica. Na Figura sdo mostrados alguns exemplos de uso desses
operadores.

Tabela 2.10: Operadores logicos.

Operador Descricao
! Para negar uma expressao logica.

-a ou && Parafazer um and l6gico em duas expressoes.

-0 ou || Para fazer um or légico em duas expressoes.

(1
[! -r "arquivo"]
Verdadeiro se "arquivo" nao tiver permissdo de letura.

[-x "argl" -a -x "arq2"]
Verdadeiro se "arql" e "arg2" forem executaveis.

[-f "nomel"] || [-f "nome2"]

Verdadeiro se pelo menos um deles for arquivo regular.
- J

Figura 2.40: Exemplo de operadores légicos.

Bash, como varias outras linguagens de programacao, utiliza légica de curto-circuito.
Assim, esses operadores podem ser usados para encurtar algumas linhas de cddigo. Dessa
forma é possivel pular a avaliacdo do seu argumento da direita se ficar claro que o ar-
gumento da esquerda ja forneceu informacgfes suficientes para decidir o valor geral. As
Figuras e mostram exemplos.

No exemplo da Figura [2.41] usou-se o operador “|| ", que significa “ou”. No lado es-
querdo da expresséao € pedido que verifique se o arquivo file.sh existe. Se existir, este

lado da expressao retornou “Verdadeiro”. Com o operador “ou”, o resultado final ja sera “Ver-
dadeiro” independentemente se do lado direito da expresséo for “Verdadeiro” ou “Falso”. Ou

Shell-Script 41

O lado direito da expressdo sO sera executado se o lado esquerdo for falso.

[-f "file.sh"] || echo "Arquivo file.sh ndo existe"

Figura 2.41: Usando || para encurtar linhas de cédigo.

A mensagem sO serd impressa se o lado esquerdo da expressdo for verdadeiro.

[-k "arquivo"] && echo "O sticky bit de arquivo esta ativo."

Figura 2.42: Usando && para encurtar linhas de codigo.

seja, “o lado esquerdo ja forneceu informacdes suficientes para decidir o valor geral”. Se
0 arquivo nao existir, o lado esquerdo ira retornar “Falso”. Ainda ndo se pode afirmar o
resultado geral da expresséao e, entéo, forca-se a execucao do lado direito fazendo com que
se imprima na tela uma mensagem de erro.

O resultado geral de uma expressao que possui o operador “&&’, que significa “e”, sO
sera “Verdadeiro” se ambos os lados da expresséo forem “Verdadeiros”. Portanto, se o lado
esquerdo for “Falso”, nem adianta executar o lado direito, pois o resultado geral jA pode ser
antecipado: “Falso”. Veja exemplo na Figura[2.42]

Se um dos lados da expressao possui mais de uma instrucdo, podera ser criado um
bloco de instrugéesﬁ, compreendidos por chaves ({}).

2.7 ESTRUTURAS DE CONTROLE

Como uma linguagem de programacao, Bash também apresenta estruturas condi-
cionais e de repeticdo. Nas secdes seguintes sdo detalhadas as maneiras como essas
estruturas podem trabalhar em Bash.

2.7.1 Estruturas Condicionais

As declaracdes condicionais sao usadas nos scripts para decidir qual parte do pro-
grama deve ser executada em funcao de condi¢des especificadas.

if, else e elif

A instrucdo if avalia uma expresséao légica para tomar uma decisdo, e possui o for-
mato apresentado na Figura|2.43|

6Um bloco de instrucdes também poderé ser aberto, por exemplo, por um do, por um if , por um else , ou
por um case , e fechado por um done, um else , umfi , ou por um esac , como mostrado na Segéo

42 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

if condicao
then
instrucdo 1
instrucdo 2

else
instrucdo 3

instrucdo 4

fi

Figura 2.43: Formato basico da estrutura if .

Nota-se que nao ha necessidade de se usar chaves ({}) para limitar os blocos “ver-
dadeiro” e “falso”, mesmo que cada bloco possua mais de uma instrugdo, como é o caso da
linguagem C. Para concluir a estrutura if usa-se o if escrito ao contrério: fi

E muito importante saber que em Bash, ao contrario da grande maioria das linguagens
de programacao, verdadeiro vale 0 e falso vale 1. Essa € uma grande causa de erros
em shell-scripts, necessitando-se assim de muita atengdo as estruturas condicionais. Ha
varias situacfes em que isso facilita a vida do programador de scripts para administracao
de sistemas. Em Bash, o cddigo de erro retornado por um programa que é bem sucedido é
0. Se um programa retorna um cédigo diferente de 0 é sinal que algum erro ocorreu. Com
isso, pode-se executar um programa no lugar de um teste. Se o resultado do programa for
0 é sinal que o programa foi bem sucedido e a instrucdo if € executada. Se houve algum
erro na execucao do programa, a instrucao else sera executada.

As Figuras e apresentam exemplos de uso da instrucéo if

#!/bin/bash

num=3$1

if (($1 > 10))
then
echo "Vocé _digitou _um ndmero _maior _que_10."
else
echo "Vocé _digitou _o_nimero $1."
fi

Figura 2.44: Exemplo simples de uso do if .

Existem situacdes em que ha duas ou mais escolhas possiveis quando a condi¢céo
if ndo for aceita. Nesse caso pode-se usar a funcéo elif , que equivale a “else if”. As
instrucbes if e elif sdo executadas uma por vez, até que uma seja verdadeira ou até que

Shell-Script 43

#l/bin/bash

if who | grep $1 > /dev/null # grep retornard 0 se encontrar algum valor.
then
echo "$1 _esta _logado."
else
echo "$1 _ndo_esta _logado."
fi

Figura 2.45: Verificando se um usuério esta logado com if

a condicdo else seja alcancada. Quando atendida uma condi¢éo, o bloco correspondente
€ executado e os demais ignorados. A Figura mostra um exemplo de uso dessas
instrucoes.

#l/bin/bash
hora='date +%H*

if [$hora -It 12]
then

echo "Bom_dia, _$LOGNAME"
elif [$hora -It 18]

then
echo "Boa _tarde, _$LOGNAME"
else
echo "Boa_noite, _$LOGNAME"
fi
Figura 2.46: Usando if e elif
case

A estrutura case permite selecionar uma entre varias opcdes de acéo, baseando-se
num valor de uma variavel. Deve ser usada no lugar da declaracdo if quando esta tiver
um grande numero de condi¢des. A Figura contém um exemplo de uso do case .

Essa estrutura pode ser usada para executar declaragdes que dependem de um valor
isolado ou de uma faixa de valores. Se nenhum valor for encontrado, ha a op¢éo de executar
o valor padrdo “*”. A variavel definida logo apos a instru¢do case tem que casar com
alguma das opcdes em seguida. Se nenhuma opc¢éo for escolhida, a opgédo padréo sera
executada.

44 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#l/bin/bash

opcao=%$1

case $opcao in
Sim | sim) echo "Vocé _concordou!"
Nao | nao) echo "Que_pena!" ;;
*) echo "Nem_sim, _nem n&o";;
esac

Figura 2.47. Exemplo de uso da estrutura case .

Deve-se observar que as instru¢des terminam com um duplo ponto-e-virgula “;;”. Se
ndo for assim, a instrugdo seguinte sera executada junto. Para encerrar a estrutura case
usa-se esac , que é case escrito ao contrario.

2.7.2 Estruturas de Repeticao

S&o usadas para repetir uma série de comandos contidos em sua declaracao.

for

A estrutura for aceita mais de uma forma, que sdo mostradas através de exemplos.

O primeiro formato é apresentado na Figura[2.48] A variavel i recebe a lista de valores
gue vem depois da declaracéo in , sendo um valor de cada vez. Para cada valor da lista, o
loop for sera executado uma vez.

#l/bin/bash

for i in 123456789
do

echo "$i"
done

Figura 2.48: Primeiro exemplo da estrutura for .

O segundo formato é mostrado na Figura[2.49] A variavel lista contém uma lista de
valores. Da mesma maneira que no primeiro formato, i recebera, uma a um, os valores de
lista . Uma variante desse formato pode ser vista na Figura [2.50]

Um terceiro formato é apresentado na Figura [2.51] Aqui ndo ha a instrucéo in . A
variavel i recebe a lista de parametros passada para o script na linha de comandos. Esse
formato é analogo ao mostrado na Figura[2.52]

Shell-Script 45

#l/bin/bash

lista="1 2 3456789

for i in $lista
do

echo "$i"
done

Figura 2.49: Segundo exemplo da estrutura for .

#!/bin/bash

for i in ‘s
do

echo "$i"
done

Figura 2.50: Terceiro exemplo da estrutura for .

#1/bin/bash

for
do

echo "$i"
done

Figura 2.51: Quarto exemplo da estrutura for .

#!/bin/bash

for i in $@
do

echo "$i"
done

Figura 2.52: Quinto exemplo da estrutura for .

Um quarto formato, que passou a existir a partir da versédo 2 do Bash, permite que o
for seja declarado numa sintaxe parecida com a da linguagem C. A Figura mostra um
exemplo de uso do for dessa maneira.

46 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#l/bin/bash

for ((i=1; $i < 10; i++))
do

echo "$i"
done

Figura 2.53: Nova sintaxe para o comando for .

while

A estrutura while pode ser usada para executar uma série de instru¢cdes enquanto
uma condicao especificada for “verdadeira”. O loop termina quando a condic&o especificada
se tornar “falsa” e for verificada. Pode ser que o loop n&o seja nem iniciado se a condic¢éo for
avaliada “falsa” desde o comeg¢o. Também pode ser que o loop nunca acabe se a condicao
especificada nunca se tornar “falsa”. E importante que o leitor tenha em mente que, em
Bash, Verdadeiro € 0 e Falso é 1. O bloco que serd executado na estrutura while fica
entre as instru¢des do e done. Na Figura[2.54 h4 um exemplo de uso do while

#l/bin/bash

i=1

while (($i < 10)
do

echo "$i"

i= expr $i + 1
done

Figura 2.54: Exemplo de uso do while

until

A estrutura until pode ser usada para executar uma série de instrugfes até que
uma condicéo seja “verdadeira”, ou seja, ao contrario do while , ela é executada enquanto
uma condicao é “falsa”. A partir do momento em que esta condicdo se torna “verdadeira”
e é verificada, o bloco de instrucdes do until deixa de ser executado. O bloco que sera
executado na estrutura until fica entre as instru¢des do e done. Um exemplo de uso do
until & apresentado na Figura[2.55]

Shell-Script a7

#l/bin/bash

i=1

until [$i = 10]
do

echo "$i"

i= expr $i + 1
done

Figura 2.55: Exemplo de uso do until

break

A instrucéo break deve ser usada quando se deseja interromper a execugdo de um
loop. Quando usado, a execucdo do script ird para a linha seguinte ao done, ou seja,
continua apos o bloco de instrucdes onde o break se localizava. Se houver vérios blocos,
um dentro do outro, pode-se usar a seguinte sintaxe: break [n], onde n representa a
guantidade de loops mais internos sobre os quais os comandos irdo atuar. Quando nada
€ especificado, n vale 1 (valor default). Um exemplo de uso do break pode ser visto na

Figura|2.56]

#!/bin/bash

i=1

while (($i < 10)
do
if [$i =5]
then
break # Interrompe a execugdo do while.
fi
echo "$i"
i= expr $i + 1
done

echo "Terminei _antes _do_cinco"

Figura 2.56: Exemplo de uso do break .

continue

A instrucdo continue € similar a do break , mas ha uma diferenca sutil: quando o
interpretador Bash encontra a instrucdo continue ele abandona aquela iteracdo e comeca

48 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

outra dentro do loop. Ele nédo sai do loop como o break faria. Um exemplo de uso do
continue pode ser visto na Figura[2.57|

#!/bin/bash
i=1

while (($i < 10))
do
if [$ =5]
then
i=" expr $i + 1
continue # Interrompe uma iteracdo do while.
fi
echo "$i"
i=" expr $i + 1
done

echo "Pulei _o0_cinco"

Figura 2.57: Exemplo de uso do continue

2.7.3 Comando de saida — exit

A instrucdo exit pode ser usada para sair de um shell-script. Opcionalmente, pode-
se usar um numero depois do exit . Se o shell-script corrente tiver sido chamado por
outro shell-script, o script que o chamou podera verificar o c6digo e tomar uma decisdo
de acordo. Por convencao, retorna-se 0 (zero) quando o script chegar até o seu final sem
apresentar nenhuma condic&o de erro. Valores diferentes de 0 (zero) podem ser passados
para identificar diferentes tipos de problemas. A Figura mostra um exemplo de uso da
instrucao exit

2.8 FUNCOES

Da mesma forma que em outras linguagens, Bash também aceita fungdes. Uma fun-
cdo é um pedaco de programa que executa um certo conjunto de instrucdes que pode ser
usado mais de uma vez. Uma fungéo tem o formato conforme apresentado na Figurg2.59|

Os parénteses informam ao Bash que uma funcao esta sendo especificada, a as ins-
trucdes que serdo executadas ficam entre chaves ({}). Pode-se observar que pelo menos
um espaco em branco deve ser colocado entre as instru¢des e as chaves de inicio e fim.
Quando a fungdo é chamada no corpo do script, ela executara todas as instrugbes que
foram colocadas entre as chaves.

Shell-Script 49

#l/bin/bash

arquivo="file.txt"

if [!-f "$arquivo" |
then
echo "$arquivo _ndo_existe"
exit 1 # Retorna codigo de erro 1
fi
if [!-r "$arquivo"]

then
echo "$arquivo _sem_permissdo _de_leitura" # Retorna codigo de erro 2
exit 2

fi

cat $arquivo

exit O # Sucesso! Codigo de erro 0

Figura 2.58: Exemplo de uso do comando exit

nome_funcao ()
{
instrugdo 1
instrucdo 2
instrucdo 3

Figura 2.59: Estrutura basica de uma funcgéo.

Passa-se parametros para uma funcao colocando-os na frente do nome da funcao, da
mesma forma que se faz com um comando na linha de comandos. Para recupera-los dentro
da funcdo é necessario usar as variaveis incorporadas (Sec¢éo $1, $2, $3, ..., como
qualquer outro comando. Um exemplo do uso de fun¢des pode ser visto na Figura [2.60]

No Bash, as funcdes devem ser declaradas antes de seu uso, porgue ele interpreta as
linhas do script sequiencialmente, do inicio ao fim. Bash ndo compila o script antes de sua
execucdao, portanto ndo teria como saber de ante-mao o significado daquela funcgéo.

2.9 SCRIPTS INTERATIVOS

Uma das formas de se passar informacdes para um shell-script € através de parame-
tros no momento em que o script é chamado. Dessa forma, ndo hé interatividade. Ao invés

50 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#l/bin/bash

saudacao () # Declaracdo da funcdo saudacao().

{
echo "Bom_dia _$1_$2!"

}

nome="Herlon"
sobrenome= "Camargo"

saudacao $nome $sobrenome # Passando parédmetros para fungdo saudacao().

Figura 2.60: Exemplo de uso de uma funcéo

de se passar uma série de parametros, cujo significado precisa ser decorado pelo usua-
rio, pode-se fazer uso de perguntas ao longo do script e também de menus. Esta secéo
apresenta alguns comandos que podem acrescentar interatividade aos scripts.

2.9.1 read

O comando read recebe a préxima linha da entrada (que pode ser a entrada padrao
ou qualquer outra definida pelo usuério) e a atribui a uma variavel. A Figura[2.61 mostra um
exemplo de um script sem interacdo com o usuario, onde a informacéo é passada atraves
de parametros de linha de comandos. Ja a Figura mostra o script reescrito com o
uso do read . Ambos os scripts fazem a mesma coisa, sé que o segundo de uma forma
interativa.

#1/bin/bash

nome=$1

echo "Ola _$nome, _como_vai?"

Figura 2.61. Exemplo de script ndo interativo.

#l/bin/bash
echo -n "Digite _seu_nome: " # A opgdo -n serve para O cursor nao
read nome # mudar de linha.

echo "Ola _$nome, como_vai?"

Figura 2.62: Exemplo de script interativo.

Shell-Script 51

No exemplo da Figura[2.62], o comando read d& uma pausa no script e espera uma
entrada do teclado. Quando a tecla <ENTER>é pressionada, a informacédo digitada pelo
teclado é atribuida a variavel nome, e o script continua. Se durante a pausa for usada a
combinacédo de teclas <Ctrl+d> , o script seré finalizado.

O comando read também pode ser usado para ler dados de um arquivo. Ele ira ler
linha por linha desse arquivo. Deve ser usado em conjunto com o comando while e ter
a entrada primaria redirecionada para o arquivo. A Figura mostra a estrutura a ser
utilizada. Um exemplo é mostrado na Figura[2.64]

while read var_linha # Cada linha do arquivo "arq_nome" sera atribuida
do # individualmente a variavel "var_linha", que po-
... $var_linha ... # de ser trabalhada normalmente dentro do bloco
do while.

done < arg_nome

Figura 2.63: Lendo linha por linha de um arquivo.

#!/bin/bash

while read linha

do
login=""echo "$linha" | cut -f1 -d:
nome=‘echo "$linha" | cut -f5 -d:*
echo -e "$login\t\tSnome"

done < /etc/passwd

Figura 2.64. Usando o read para ler linha por linha de um arquivo.

Algumas opc¢bes podem ser passadas para o comando read . Dentre as mais utiliza-
das, podemos destacar as mostradas na Tabela|[2.11]

2.9.2 select

Ha ocasides em que € interessante oferecer um menu para o0 usuario selecionar uma
opcao dentre varias. O comando select em conjunto com o0 comando case permite a
elaboragédo desse menu de forma simplificada.

A Figura [2.65 mostra o0 uso do comando select . O prompt do menu é atribuido a
variavel de sistema PS3, que sera usada como prompt para escolha de uma das opc¢oes.
Define-se uma variavel que recebera a opcao escolhida e em seguida a lista de opc¢odes.
Dentro do select usou-se o comando case para tratar cada opcao.

52 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Tabela 2.11: Opc¢des do comando read .

Opcao Descricao

-p Fornece um prompt para fazer a leitura. Exemplo: read -p "Digite o
seu nome:" nome , exibird a frase “Digite o seu nome:” e ficara aguar-
dando uma resposta do usuario. A variavel nome recebera a resposta do

usuario.

-t Aguarda um determinado tempo para que o usuério digite uma res-
posta. Exemplo: read-t 10 -p "Digite seu nome:" nome ||
echo "Digite mais rapido" , aguardara 10 segundos para que O

usuario digite seu nome e tecle <ENTER> Se isso ndo ocorrer, 0 comando
read retorna um erro e o lado direito da expressao € executado.

-n Espera que o usuério digite n caracteres para encerrar o read . A execu-
céo pode ser interrompida antes dos n caracteres se pressionada a tecla
<ENTER> Exemplo: read -n 3 -p "Digite o DDD:" codigoDDD ,
encerra automaticamente quando o usuario digitar trés caracteres.

-S Tudo que for digitado ndo aparecera na tela. Ideal para receber senhas.
Exemplo: read -s -p "Digite a senha:" senha_user , 0 que for
digitado ndo sera ecoado na tela.

Variavel $SREPLY

No exemplo da Figura [2.65] as opgdes listadas no menu foram iguais aos valores
possiveis passados ao comando select . Na maioria das situa¢cfes, sera necessario co-
locar no menu uma frase maior, descrevendo a respectiva op¢do. Nesses casos, pode-se
usar a variavel de sistema $REPLY, que ira armazenar a resposta digitada pelo usuério. A
Figura[2.66] apresenta o exemplo anterior fazendo uso da variavel $REPLY.

2.9.3 Pro6s e Contras da Interatividade

Do ponto de vista do usuario, um script interativo € mais “amigavel” que um script ndo
interativo. Mas, para o administrador de sistemas e/ou de redes, na maioria das vezes,
havera a necessidade se se programar uma determinada tarefa para ser executada poste-
riormente, sem a presenca do administrador por perto. Nessa situacao, o script deve estar
preparado para ter todas as respostas de que precisa, de forma automatica, sem interacao

com o administrador. Para o administrador, o script mais “amigavel” é aquele que pode ser
executado de forma automética.

Shell-Script 53

#l/bin/bash

PS3="Estamos _em qual _estacdo _do_ano? "
echo "As _Quatro _Estacbes”
select estacao in verao outono inverno primavera sair

do
case $estacao in
verao) echo "Estamos _no_Verdo!"
outono) echo "Estamos _no_Outono!"
inverno) echo "Estamos _no_lnverno!"
primavera) echo "Estamos _no_Primavera!"
sair) echo "Saindo _do_programa!"
break
*) echo "Opcgdo _Invalida!"
esac
done

Figura 2.65: Exemplo de uso do select

2.10 EXEMPLO — CONSTRUINDO UMA LIXEIRA: PARTE 1/2

Esta secdo apresenta um exemplo mais completo, abrangendo os conceitos apresen-
tados neste capitulo. Sera desenvolvido um script que implementa uma “Lixeira de Arqui-
vos”, ou seja, um diretdrio temporario para o usudrio deixar seus arquivos antes da remogao
definitiva. Este exemplo é baseado em [Neves (2003)].

A lixeira funciona da seguinte forma: para que um arquivo seja enviado para a mesma,
deve-se usar o script lixo.sh . Esse script ndo apaga 0s arquivos, mas 0s envia para a
lixeira. Para se restaurar um arquivo ou se esvaziar a lixeira, usa-se o script lixeira.sh
(Se¢éo[3.4.1). Serdo construidos dois scripts nesse exemplo final.

A idéia consiste em:

e criar um script capaz de enviar os arquivos especificados pelo usuario para um
diretorio temporario, onde ficardo armazenados até que sejam definitivamente apa-
gados, ou entdo, restaurados para seus lugares de origem;

e 0 diretorio temporario (lixeira) sera criado, caso ndo exista, durante a execucao do
script lixo.sh

e a lixeira sera o diretério oculto .lixeira que ficara no diretorio padréo de cada
usuario;

54 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#l/bin/bash

PS3="Digite _o0_numero _de_sua, opgao:
echo "De_qué_vocé mais _gosta?"
select estacao in "Calor _do_verdo" \

"Vento _do_outono" \

"Frio _do_inverno" \

"Flores _da_primavera" \

"Quero _sair _deste _programa"

—

do
echo "Vocé _escolheu:
case $REPLY in
"1") echo "que _gosta _do_verdo, _apesar _do_calor."

"2") echo "que _curte _o0_outono, _mesmQg,com_muito _vento."

"3") echo "que _adora _o_inverno, _mesmq passando _frio."

"4") echo "a _primavera _por causa das_flores."

"5") echo "que _deseja _sair."
break

*) echo "opg¢do _invalida!

esac
done

Figura 2.66: Exemplo de uso do $REPLY.

e quando um arquivo for enviado para a lixeira, serad gravada uma linha no final do
arquivo contendo informacg@es para restauracao;

e arestauracao e/ou esvaziamento da lixeira serdo feitos através do script lixeira.sh
onde, através de um menu, escolhe-se a acdo desejada.

e para restaurar um arquivo, o script verifica a ultima linha do arquivo para recuperar
as informacdes necessarias, e 0 envia para seu local de origem;

e para esvaziar a lixeira, simplesmente apaga-se todos os arquivos dentro do diretdrio
temporério (lixeira) com o comando rm.

O primeiro script chamado lixo.sh ser& construido neste capitulo. O segundo script,
de nome lixeira.sh sera construido no Capitulo [3, apés serem apresentados conceitos
de Sed e Awk

Shell-Script 55

2.10.1 Script lixo.sh

E importante que o leitor saiba que, por se tratar de um exemplo didatico e, apesar
de todos os esforcos e testes realizados, o autor ndo pode garantir que o script lixo.sh
funcionara corretamente para todos os tipos de arquivos, podendo, no caso de falhas, haver
a perda total de dados dos arquivos manipulados. Recomenda-se que o leitor fagca testes
antes em arquivos sem importancia, até adquirir uma certa confianca no script utilizado no
exemplo.

Para utilizar o script lixo.sh , deve-se passar como parametros os nomes dos ar-
quivos a serem enviados para a lixeira. Se nao houver parametros, sera mostrada um
mensagem de erro. Na Figura[2.67|é mostrada a verificagcdo da chamada do script.

#l/bin/bash

if [$# -eq 0]

then
echo "Erro! _Use: $0_arquivol _[arquivo2] _[arquivo3]
echo " E_permitido _o_uso _de_metacaracteres."

exit 1
fi

Figura 2.67: Testando os parametros do script lixo.sh

Em seguida, define-se o diretdrio que sera usado como lixeira, em funcéo do diretério
padrdo do usuario. Testa-se se o diretdrio ja existe, e em caso negativo sera criado. Testa-
se também se h& permissdo de escrita nesse diretdrio. Em caso negativo sera exibida uma
mensagem de erro. A Figura [2.68 mostra essa parte do cédigo.

Dentro do loop for , verifica-se todos os arquivos que foram passados como parame-
tros, quanto a sua existéncia e se ha permissdo de mové-los. Um outro teste é feito para
gue se saiba se estdo sendo apagados os arquivos que estao dentro da lixeira. Para apa-
gar arquivos dentro da lixeira existe um script apropriado (lixeira.sh). Por ultimo, séo
anexadas, ao final do arquivo, informagdes para restauragdo. A Figura[2.69 mostra o loop
for .

O cdédigo completo do script lixo.sh pode ser visto nas Figuras[2.70/ e [2.71]

56

EDITORA - UFLA/FAEPE - Automacéao de Tarefas

DIR_LIXEIRA= "$HOME/ lixeira"

if [!-d $DIR_LIXEIRA]
then

mkdir $DIR_LIXEIRA
fi

if [!-w $DIR_LIXEIRA]
then

echo "Lixeira _($DIR_LIXEIRA) _sem_permissdo _de_escrita."
echo " Mude_a_permissdo _e, _tente _novamente _..."

[ETETETT—

exit 2
fi

erro=0

Figura 2.68: Criando o diretorio .lixeira

Shell-Script

57

for
do

done
exit

arquivo

if [! -f Sarquivo]

then
echo "$arquivo _nédo_existe."
erro=3
continue

fi

DIR_ORIGEM=‘dirname $arquivo’

if [!-w $DIR_ORIGEM]

then
echo "Sem_permissdo _de _remover _no_diretorio _$DIR_ORIGEM."
erro=4
continue

fi

if ["$DIR_ORIGEM" = "$DIR_LIXEIRA"]

then
echo "Use \" lixeira.sh\ " _para _esvaziar _a_lixeira."
erro=5
continue

fi

cd $DIR_ORIGEM

echo ™ >> S$arquivo

pwd >> $arquivo

mv $arquivo $DIR_LIXEIRA

echo "$arquivo _enviado _para _lixeira."

$erro

Figura 2.69: Verificando arquivos que serdo apagados.

58 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#!/bin/bash

if [$# -eq 0]

then
echo "Erro! _Use: $0_arquivol _[arquivo2] _[arquivo3] "
echo " _ E permitido _o_uso_de_metacaracteres."
exit 1

fi
DIR_LIXEIRA= "$HOME/ lixeira"
if [!-d $DIR_LIXEIRA]
then

mkdir $DIR_LIXEIRA
fi

if [!-w $DIR_LIXEIRA]

then
echo "Lixeira _($DIR_LIXEIRA) _sem_permissdo _de_escrita."
echo "_____Mude_a_permissdo _e_tente _novamente _..."
exit 2
fi
erro=0
for arquivo
do
if [! -f Sarquivo]
then
echo "$arquivo _ndo_existe."
erro=3
continue

fi
DIR_ORIGEM='dirname $arquivo’

if [!-w $DIR_ORIGEM]

then
echo "Sem_permissdo _de _remover _no_diretorio _$DIR_ORIGEM."
erro=4
continue

fi

Figura 2.70: Cdodigo completo do script lixo.sh

Shell-Script

59

if ["$DIR_ORIGEM" = "$DIR_LIXEIRA"]

then
echo "Use _\" lixeira.sh\ " _para _esvaziar _a_lixeira."
erro=5
continue

fi

cd $DIR_ORIGEM

echo ™ >> S$arquivo

pwd >> $arquivo

mv $arquivo $DIR_LIXEIRA

echo "$arquivo _enviado _para _lixeira."
done
exit $erro

Figura 2.71: Cdadigo completo do script lixo.sh

(continuacao).

60

EDITORA - UFLA/FAEPE - Automacéao de Tarefas

3

SED, AWK E EXPRESSOES REGULARES

3.1 INTRODUCAO

O objetivo deste capitulo € apresentar ao leitor trés ferramentas poderosas para ma-
nipulacdo de textos: Sed, Awk e Expressdes Regulares. Elas podem ser utilizadas, tanto
diretamente na linha de comando, quanto em arquivos do tipo script, e vém suprir as defici-
éncias do Bash em manipulacao de textos.

Documentacéo sobre 0 Sed pode ser encontrada em [Jargas (2003)], [Jargas (2005)]
e também em [Pizzini (1998)]. Informacdes detalhadas sobre Awk podem ser encontra-
das em [FSF (2003)], [Dougherty & Robbins (1997)] e [Robbins (2001)]. E [Friedl (2002)] e
[Jargas (2002)] séo boas referéncias sobre Expressdes Regulares.

3.2 SED

3.2.1 Caracteristicas Gerais

O comando sed — Stream-Oriented Editor, na realidade, € um editor de textos nao
interativo, ou seja, orientado por fluxo. A entrada flui pelo sed e é dirigida para a saida
padrdo. Um exemplo de editores de textos que ndo séo orientados por fluxo seriam o Vi e
o Emacs.

Em geral, a entrada do sed vem de um arquivo ou de um pipe (|), podendo também
vir do teclado. A saida vai para a tela por padrdo, mas também pode ser guardada em um
arquivo ou redirecionada para um outro comando.

Ele ndo é indicado para ser utilizado como um editor de textos de uso genérico, por nao
ser nada pratico. Simples alteracdes em arquivos de textos também nao sao indicadas, pois
€ mais pratico utilizar a funcéo “substituir’ de seu editor de textos preferido. Ele é altamente
recomendado quando se deseja fazer uma substituicdo dentro de varios arquivos de texto
de uma sé vez, ou também, substituicdo por texto ndo fixo, que varia em funcéo de algum
parametro.

62 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

A sintaxe para usar o sed tem duas formas, que sdo mostradas na Figura 3.1 A
primeira forma permite que se especifique um comando de edi¢do na linha de comandos,
cercado por aspas simples ('). A segunda, permite especificar um script contendo coman-
dos sed. Se nenhum arquivo for especificado, sed usara a entrada padréo para ler dados.

sed [opcdes] 'comando’ arquivo(s)

sed [opgdes] -f script arquivo(s)

Figura 3.1: Sintaxe usada com sed.

A Tabela[3.1] mostra as op¢des do sed .

Tabela 3.1: Opc¢des usadas com sed .

Opcédo Descricao

-e Usado para especificar dois ou mais comandos de edicao.
-f Usado para especificar um arquivo contendo comandos de edicao.
-n Usado para que sejam enviadas para a saida somente as linhas que aten-

dam ao critério de pesquisa.

Um arquivo com comandos sed pode-se tornar um arquivo executavel, e ser execu-
tado diretamente na linha de comandos. Um arquivo desse tipo tem a estrutura conforme
mostrada na Figura[3.2] A primeira linha serve para, a exemplo do Bash, indicar o interpre-
tador que ira processar os comandos seguintes. E necessario dar permisséo de execucio
ao arquivo, conforme Figura 3.3

#!/bin/sed

instrucdol
instrucéo?2

Figura 3.2: Arquivo de comandos sed.

[prompt]$ chmod +x trocaletra.sed
[prompt]$./trocaletra.sed

Figura 3.3: Executando um arquivo sed .

Sed, Awk e Expressfes Regulares 63

Os comandos sed tém a forma geral mostrada na Figura [3.4], e se constituem em
enderecos e funcdes de edicdo. As funcbes consistem em uma Unica letra ou simbolo.
Algumas das mais utilizadas serdo mostradas nas secfes seguintes. Para uma relacéo
completa dessas funcdes é recomendavel o uso do manual do sed Os argumentos de-
pendem de cada funcdo e os enderecos definem o escopo de abrangéncia do comando.
Se os dois enderecos forem omitidos, a interacdo sera sobre todas as linhas do arquivo
especificado. Se somente um for definido, o0 comando sé atuara sobre a linha definida.
Um endereco pode ser um numero de linha, o simbolo $ que indica ultima linha ou uma
Expressédo Regular definida entre barras “// ”. As Expressdes Regulares sdo descritas na
Secéo [3.5/e também no Capitulo 4]

[endereco][,endereco][![funcéo[argumentos]

Figura 3.4: Sintaxe dos comandos usados com sed .

Pode-se usar chaves ({}) para colocar um endereco dentro de outro ou para aplicar
multiplas fun¢des ao mesmo endereco. No caso de multiplas fungdes, a chave de abertura
deve estar no final de uma linha e a de fechamento em uma linha sozinha. Deve-se se
certificar de que ndo haja nenhum espaco em branco depois das chaves. A Figura
mostra o uso de chaves no sed .

[endereco][,enderego]{
funcéol
funcdo2

Figura 3.5: Usando chaves com sed.

O texto mostrado na Figura[3.6), chamado de meutexto.txt ~ sera utilizado como refe-
réncia nos exemplos seguintes. O autor aconselha que se crie um arquivo com o contetudo
mostrado na Figura [3.6| para o leitor poder verificar os préximos exemplos.

3.2.2 Substituir — s

A funcdo s substitui a cadeia de caracteres que esta entre o primeiro par de barra
pela cadeia de caracteres contida no segundo par.

O exemplo mostrado na Figura [3.7] faz a substitui¢cdo de “Linux” por “GNU-Linux”, e
apresenta o resultado na tela. Nota-se que o0 arquivo meutexto.txt nao foi alterado.

1Comando man sed.
2Sed aceita outros caracteres para delimitacdo. As barras sdo os mais largamente utilizados.

64 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Linux € um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.
O Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional
Linux é um software de livre distribuicdo, ou
seja, ele pode ser copiado e redistribuido sem
qualquer dnus. O codigo fonte do linux esta
disponivel na Internet para os interessados.

Figura 3.6: Conteldo do arquivo meutexto.txt

(1
[prompt]$ sed ’'s/Linux/Gnu-Linux/’ meutexto.txt

Gnu-Linux é um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.

O Gnu-Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional
Gnu-Linux € um software de livre distribuigdo, ou
seja, ele pode ser copiado e redistribuido sem
qualquer 6nus. O cédigo fonte do linux esta
disponivel na Internet para os interessados.
[prompt]$ cat meutexto.txt

Linux € um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.

O Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional
Linux € um software de livre distribuigdo, ou
seja, ele pode ser copiado e redistribuido sem
qualquer 6nus. O cédigo fonte do linux esta

disponivel na Internet para os interessados.
- J

Figura 3.7: Substituindo “Linux” por “Gnu-Linux” no arquivo meutexto.txt

Para gravar o resultado em um arquivo, basta redirecionar a saida para esse arquivo.
Mas deve-se levar em consideracdo o seguinte detalhe: ndo se redireciona a saida do
sed para o mesmo arquivo de entrada. Quando isso acontece, o shell apagara o arquivo
de entrada para poder receber a saida do comando. Isso antes de executar o comando.
Portanto, quando o comando for executado, o arquivo de entrada ja estara vazio e seu
conteudo estara perdido.

No exemplo da Figura [3.7] observa-se que a Ultima ocorréncia da palavra “linux” ndo
foi trocada. Foi pedido para que se trocasse “Linux” e nao “linux”. Para que todas as
ocorréncias sejam satisfeitas, passa-se “[LIlJinux " em vez de “Linux”. A Figura[3.8)mostra
como ficou essa alteracao.

Sed, Awk e Expressfes Regulares 65

[prompt]$ sed 's/[LIjinux/Gnu-Linux/ meutexto.txt
Gnu-Linux é um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.

O Gnu-Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional
Gnu-Linux é um software de livre distribuicdo, ou
seja, ele pode ser copiado e redistribuido sem
qualquer 6nus. O cédigo fonte do Gnu-Linux esta

disponivel na Internet para os interessados.
- J

Figura 3.8: Substituindo “Linux” e “linux” por “Gnu-Linux” no arquivo meutexto.txt

Se em vez de a troca ser por “GNU-Linux” fosse por “GNU/Linux”, deveria-se anular a
barra para que ela ndo fosse interpretada. Usa-se, para isso, a contra-barra “\". A Figura[3.9)
mostra a troca por “GNU/Linux”.

(I
[prompt]$ sed ’s/[LIJinux/GnuVLinux/ meutexto.txt

Gnu/Linux é um sistema operacional multiusuério e
multitarefa que roda em diversas plataformas.

O Gnu/Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional
Gnu/Linux é um software de livre distribuicdo, ou
seja, ele pode ser copiado e redistribuido sem
qualquer 6nus. O codigo fonte do Gnu/Linux esta
disponivel na Internet para os interessados.

Figura 3.9: Usando a contra-barra.

Deseja-se, agora, trocar todas as letras “a” por “u”, apenas nas linhas 2 e 3. Se nao
for colocada a letra g (global) no final, o sed trocara apenas a primeira ocorréncia em cada
linha. Aproveitou-se esse exemplo para redirecionar a saida de um outro comando para o
sed . A Figura[3.10|mostra como ficou esse exemplo.

(7
[prompt]$ cat meutexto.txt | sed '2,3s/a/u/g’

Linux € um sistema operacional multiusuario e
multiturefu que rodu em diversus plutuformus.
O Linux upresentu interutividude com outros
sistemas operacionais. O sistema operacional
Linux € um software de livre distribuigdo, ou
seja, ele pode ser copiado e redistribuido sem
qualquer 6nus. O cédigo fonte do linux esta

disponivel na Internet para os interessados.
i J

Figura 3.10: Definindo endereco para o sed.

66 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

3.2.3 Imprimir — p

A funcédo p imprime na saida padrao as linhas de um endereco especificado ou que
atendam a determinado argumento de pesquisa. A Figura[3.11]apresenta um exemplo onde
serdo mostradas somente as linhas que contém a palavra “Linux”. Foi necessario incluir a
opg¢éo -n para que o sed mostrasse apenas as linhas requisitadas. A falta dessa opc¢éao faz
com que o resultado do sed mostre todas as linhas do arquivo de entrada, e as linhas que
atendem ao parametro de pesquisa seréo duplicadas. A Figura [3.12] mostra esse mesmo
exemplo sem a opgao -n .

[prompt]$ sed -n ’/Linux/p’ meutexto.txt

Linux € um sistema operacional multiusuario e
O Linux apresenta interatividade com outros
Linux é um software de livre distribuicdo, ou

Figura 3.11: Usando a funcdo p em conjunto com a opgao -n .

[prompt]$ sed '/Linux/p’ meutexto.txt

Linux € um sistema operacional multiusuario e
Linux € um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.
O Linux apresenta interatividade com outros
O Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional
Linux € um software de livre distribuicdo, ou
Linux € um software de livre distribuicdo, ou
seja, ele pode ser copiado e redistribuido sem
qualquer 6nus. O cédigo fonte do linux esta

disponivel na Internet para os interessados.
- J

Figura 3.12: Usando a fungéo p sem a opgao -n .

Para serem exibidas todas as linhas, exceto as que atendem o argumento de pesquisa,
usa-se o simbolo de negacéo “!” antes de p. Um exemplo é mostrado na Figura(3.13]

(. 1
[prompt]$ sed -n ’'/Linux/!p’ meutexto.txt

multitarefa que roda em diversas plataformas.
sistemas operacionais. O sistema operacional
seja, ele pode ser copiado e redistribuido sem
qualquer dnus. O codigo fonte do linux esta

disponivel na Internet para os interessados.
-

Figura 3.13: Usando o simbolo de negacéo ! .

Sed, Awk e Expressfes Regulares 67

3.2.4 Deletar-d

A funcéo d exclui as linhas de um endereco especificado ou que atendam a deter-
minado argumento de pesquisa. No exemplo mostrado na Figura [3.14] séo eliminadas as
linhas que contém a palavra “Linux”. Isso fez 0 mesmo resultado do exemplo da Figura|3.13|

(1
[prompt]$ sed '/Linux/d’ meutexto.txt

multitarefa que roda em diversas plataformas.
sistemas operacionais. O sistema operacional
seja, ele pode ser copiado e redistribuido sem
qualquer 6nus. O cédigo fonte do linux esta
disponivel na Internet para os interessados.

Figura 3.14: Usando a fungéo d.

3.2.5 Acrescentar —a

Acrescenta um texto apds o endereco informado. Deve ser utilizada sempre com a
contra-barra “\”. No prompt secundario que se abre digita-se o texto a ser acrescentado.
As linhas do texto devem terminar com uma contra-barra, exceto a Ultima. Essa contra-
barra esconde o sinal de nova linha. No exemplo da Figura [3.15]insere-se um texto apés a
quinta linha.

[prompt]$ sed '5a\

> Este texto foi inserido \

> apls a quinta linha.” meutexto.txt

Linux é um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.
O Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional
Linux € um software de livre distribuicdo, ou
Este texto foi inserido

apos a quinta linha.

seja, ele pode ser copiado e redistribuido sem
qgualquer dnus. O codigo fonte do linux esta
disponivel na Internet para os interessados.

Figura 3.15: Usando a funcao a.

3.2.6 Inserir—i

Faz o mesmo que a fungéo a (Secéo [3.2.5), mas em vez de inserir um texto apos o
endereco especificado, insere antes do endereco. Veja um exemplo na Figura (3.16[

68 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$ sed '5i\

> Este texto foi inserido \

> antes da quinta linha.’ meutexto.txt

Linux & um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.
O Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional
Este texto foi inserido

antes da quinta linha.

Linux é um software de livre distribuicdo, ou
seja, ele pode ser copiado e redistribuido sem
qgualquer dnus. O codigo fonte do linux esta
disponivel na Internet para os interessados.

Figura 3.16: Usando afuncaoi .

3.2.7 Trocar—c

Semelhante a fungéo a (Sec¢do [3.2.5)), s6 que substitui o enderego especificado por
um texto. No exemplo da Figura insere-se um texto no lugar da quinta linha.

[prompt]$ sed '5¢\

> Este texto foi inserido no \

> |ugar da quinta linha.” meutexto.txt

Linux & um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.
O Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional
Este texto foi inserido no

lugar da quinta linha.

seja, ele pode ser copiado e redistribuido sem
qualquer dnus. O codigo fonte do linux esta
disponivel na Internet para os interessados.

Figura 3.17: Usando a fungéo c.

3.2.8 Finalizar - q

Finaliza a execucdo do sed no endereco especificado ou quando encontrar a pri-
meira ocorréncia que atenda a um determinado argumento de pesquisa. O exemplo da
Figura[3.18 mostra as cinco primeiras linhas do arquivo, e o exemplo da Figura[3.19 mostra
o0 texto até a linha que contém a palavra “interatividade”.

Sed, Awk e Expressfes Regulares 69

[prompt]$ sed '5q’ meutexto.txt

Linux € um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.
O Linux apresenta interatividade com outros
sistemas operacionais. O sistema operacional

Linux é um software de livre distribuicdo, ou
. J

Figura 3.18: Finalizando a execugdo na quinta.

[prompt]$ sed '/interatividade/q’ meutexto.txt
Linux € um sistema operacional multiusuario e
multitarefa que roda em diversas plataformas.
O Linux apresenta interatividade com outros

Figura 3.19: Finalizando a execucédo ao encontrar a palavra “interatividade”.

3.3 AWK

3.3.1 Caracteristicas Gerais

Awk é um poderoso programa para processamento de arquivos de textos. Os nomes
de seus autoresﬁ deram nome ao programa, que na realidade pode ser considerado uma
linguagem de programagéao direcionada a processamento de textos.

E conveniente usar o Awk para processar um arquivo de texto como se ele fosse com-
posto de registros e campos, como 0 caso de uma banco de dados textual. Os registros
podem ter comprimento fixo ou variavel separados por um delimitador, que geralmente € um
caracter de nova linha. Os campos do registro sao separados também por um caracter deli-
mitador, que por padrédo € um espaco em branco ou um <TAB>. Todos esses delimitadores,
sejam de registro ou de campo, podem ser alterados previamente.

Entre as caracteristicas que o Awk tem, como linguagem de programacéo, pode-se
destacar:

e utilizar variaveis de sistema e de usuario;

e utilizar estruturas condicionais e de repeticao;
e definicdo e uso de funcoes;

e realizar operacfes aritméticas e de string;

e interagir com shell script;

e receber argumentos de linha de comando;

e produzir relatérios formatados.

3Alfred V. Aho, Peter J. Weinberger, e Brian W. Kernighan.

70 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

O Awk pode ser invocado diretamente na linha de comandos, ou através de scripts
contendo varios comandos com a sintaxe do Awk. A implementa¢do GNU do Awk é conhe-
cida como Gawk e pode ser chamada através do comando gawk ou mesmo awk.

3.3.2 Funcionamento

O Awk pode ser executado de duas formas. A primeira consiste em passar as instru-
cOes para o Awk na prépria linha de comandos. Essa estrutura € ilustrada na Figura[3.20
As expressdes padrdo e procedimento devem vir sempre entre apoéstrofos ('). Ja
a expressao arquivo(s) sera um ou mais arquivos contendo o texto a ser processado.
Essa forma é mais utilizada quando ha poucas instrucdes a serem executadas.

awk '[padrdo] [{procedimento}]’ arquivo(s)

Figura 3.20: Passando instru¢des para o awk na linha de comandos.

A segunda forma é mostrada na Figura[3.21] A opcédo -f especifica um arquivo con-
tendo scripts em linguagem Awk. Ja a expressao arquivo(s) , cOmo no caso anterior,
sera um ou mais arquivos contendo o texto a ser processado. Usa-se um arquivo de script
guando se possui muitas instru¢des para serem processadas.

awk -f script arquivo(s)

Figura 3.21: Passando um script para o awk processar.

A operacao basica do Awk, tanto nas duas formas apresentadas anteriormente, con-
siste em examinar linha por linha do arquivo de entrada, verificando se alguma atende ao
padrdo e, aquelas que atenderem, executar sobre elas o procedimento . Quando néo for
especificado um arquivo de texto como entrada, o Awk ira ler da entrada padrao.

Para os proximos exemplos apresentados no texto, necessita-se que 0 autor possua
o banco de dados textual apresentado na Figura [3.22 Recomenda-se que o arquivo seja
gravado com 0 nome estoque.txt . Esse arquivo contém as informacgdes referentes ao
controle de estoque de uma pequena mercearia. Cada registro € um item do estoque, € 0
primeiro campo do registro € o nome da mercadoria, 0 segundo campo € a quantidade em
estoque e, o terceiro, o valor individual de cada mercadoria.

3.3.3 Padrdes e Procedimentos

Observa-se que no arquivo estoque.txt , 0s registros estdo separados em linhas e
0s campos estdo delimitados com o caracter ponto-e-virgula “; ”. Os caracteres separado-
res de campo padrdes do Awk sdo o0 espago em branco ou o caracter <TAB>. Torna-se

Sed, Awk e Expressfes Regulares 71

farinha;36;1.90

oleo de soja;54;2.25
sabonete;85;0.8
detergente;27;1.40
sabao em barra;41;0.35
feijao;16;2.75
arroz;32;2.10
lampada;8;1.64
goiabada;12;4.30
fosforo;26;0.45

-

Figura 3.22: Conteldo do arquivo estoque.txt

necessario informar ao Awk que o delimitador de campos do arquivo estoque.txt e
Isso pode ser feito utilizando-se da opgao -F seguida do caracter delimitador.

No exemplo da Figura (3.23| sao listados apenas o nome dos produtos. O leitor pode
observar que nao foi imposto nenhum padrdo para ser seguido. Quando isso acontece,
o procedimento sera aplicado a todas as linhas. No exemplo foi pedido que se listasse
apenas o primeiro campo de todos os registros do arquivo estoque.txt . Os campos dos
registros sao representados por $1, $2, $3, respectivamente, para o primeiro, segundo e
terceiro campos. O simbolo $0 representa todos os campos do registro.

g M
[prompt]$ awk -F*;" {print $1} estoque.txt

farinha

oleo de soja
sabonete
detergente
sabao em barra
feijao

arroz

lampada
goiabada
fosforo

Figura 3.23: Listando os produtos.

Suponha-se que se deseja listar 0 nome da mercadoria com 0 seu respectivo preco.
O nome da mercadoria esta no primeiro campo e 0 seu preco esta no terceiro campo. A
Figura [3.24] mostra esta listagem. O resultado visual pode nédo ser tdo agradavel, uma
vez que os nomes das mercadorias vém separados dos pre¢os apenas por um espaco em
branco. Na Secéo seréo mostradas técnicas de formatacéo da saida.

72 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$ awk -F";" {print $1,$3} estoque.txt
farinha 1.90

oleo de soja 2.25

sabonete 0.8

detergente 1.40

sabao em barra 0.35

feijao 2.75

arroz 2.10

lampada 1.64

goiabada 4.30

fosforo 0.45
. J

Figura 3.24: Listando os produtos com seus respectivos precos.

Para exibir apenas o preco do “feijao”, € necessaria a definicdo de um padrdo , que
fagca com que o Awk trabalhe apenas com o registro correspondente. A definicdo desse
padrdo € mostrada na Figura[3.25, juntamente com o resultado da operacéao.

[prompt]$ awk -F";" '$1=="feijac" {print $1,$3} estoque.txt
feijao 2.75

Figura 3.25: Usando padrbes para pesquisa.

Os padrdes podem ser formados por expressdes relacionais, expressoes regulares e
por padrdes especiais.

Expressdes Relacionais

As expressoes relacionais servem para estabelecer comparacgdes, e seguem as mes-
mas regras da linguagem C. A Tabela mostra 0s operadores de comparacao, e a Ta-
bela[3.3 mostra os operadores légicos.

As expressdes relacionais podem ser usadas com nidmeros e com strings, e também
envolvendo operadores de comparacao e l6gicos na mesma expressao.

A Figura[3.26] mostra todos os produtos que possuem menos de 20 unidades no esto-
que, e a Figura[3.27] mostra todos os produtos que comegam com a letra “f”. Se houvesse
apenas a condicdo $1 > "f* , seriam mostrados os nomes de todos os produtos que co-
mecam com a letra “f” em diante. Se fosse feito $1 == "f* s6 mostraria produtos que se
chamassem exatamente “f”.

Sed, Awk e Expressfes Regulares 73

Tabela 3.2: Operadores de comparagao.

Operador Descricdo

== Igual a.

> Maior que.

< Menor que.

>= Maior ou igual a.
<= Menor ou igual a.

Tabela 3.3: Operadores logicos.

Operador Descricao
&& Retorna verdadeiro se os dois lados da expresséo forem verdadeiros.

I Retorna verdadeiro se pelo menos um dos lados da expresséo for verda-
deiro.

! Nega a expressao.

[prompt]$ awk -F";" '$2 <= 20 {print $1,$2}' estoque.txt
feijao 16

lampada 8

goiabada 12

Figura 3.26: Produtos que possuem menos de 20 unidades no estoque.

[prompt]$ awk -F"" '$1 >= "f* && $1 <= "g" {print $1}' estoque.txt
farinha

feijao

fosforo

Figura 3.27: Produtos que comecam com a letra "f".

Expressbes Regulares

As expressoes regulares séo discutidas com mais detalhes na Sec&o (3.5, E mostrado,
nesta secédo, apenas um exemplo simples de uso com o Awk.

As expressoes regulares devem estar entre um par de barras (/ /). O exemplo da
Figura pode ser reescrito usando expressdes regulares. A Figura[3.28 mostra o Awk
utilizando expressodes regulares na definicdo do padrédo . O sinal til (~) significa “corres-

74 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

ponde a” e pode ser usado com o sinal de exclamacéao (!) para significar “ndo corresponde
a”. O sinal circunflexo (*) é explicado na Se¢é&o[3.5

[prompt]$ awk -F";" '$1 ~ /AM/ {print $1}' estoque.txt
farinha

feijao

fosforo

Figura 3.28: Usando expressao regular com o awk.

Padrdes Especiais— BEGIN e END

O padrdo BEGIN permite que se especifique o procedimento que sera executado
antes da primeira linha de entrada ser processada. Muito util para definicdo de variaveis
globais e apresentacdo de cabecalhos.

No padrdao ENDpode-se definir o procedimento que serd executado apos todas as
linhas da entrada serem processadas. Ideal para apresentar relatérios com valores totais e
médios dos registros processados.

A Figura[3.29 mostra o script relatoriol.awk usando os padroes BEGINe END O
cabecalho da tabela foi definido no procedimento do padréo BEGIN. O total de mercado-
ria em estoque foi apresentado no procedimento do padrdo END O resultado pode ser

visto na Figura(3.30}

BEGIN { print "Quantidade _de_produtos" }
{ produtos += $2
print $1, $2

}
END { print "Quantidade _total _de_produtos: _", produtos }

Figura 3.29: Script usando os padrdes BEGIN e END

3.3.4 Saida Formatada

O exemplo mostrado nas Figuras e nao possui uma saida formatada. Sua
apresentacao ficou confusa. Para resolver esse problema, pode-se usar o comando printf
gue possui recursos avancados de formatacdo. Ele se comporta da mesma forma que na
linguagem C, tendo a mesma sintaxe e produzindo os mesmos resultados. A Figura 3.3]]
mostra o exemplo da Figura [3.29| reescrito usando o comando printf para produzir uma
aparéncia melhor. O resultado desse script, agora chamado de relatorio2.awk , € apre-

sentado na Figura|3.32]

Sed, Awk e Expressfes Regulares 75

[prompt]$ awk -F";" -f relatoriol.awk estoque.txt
Quantidade de produtos

farinha 36

oleo de soja 54

sabonete 85

detergente 27

sabao em barra 41

feijao 16

arroz 32

lampada 8

goiabada 12

fosforo 26

Quantidade total de produtos: 337

Figura 3.30: Resultado do script relatoriol.awk

BEGIN { FS = "}"
printf "\n%10s _%14s %9s\n" , "Produto” , "Quantidade" , "Valor"
print " "}

{ produtos += $2
capital += $2*$3
printf "%-15s _%5s %7s %4.2f\n" |, $1, $2, " $3
}
END { print
printf "Quantidade _total _de_produtos: _%d\n", produtos
printf "Capital _empregado: _R$_%4.2f\n\n" , capital }

Figura 3.31: Script usando saida formatada.

No exemplo da Figura a listagem esta em ordem alfabética, porque foi utilizado o
comando sort redirecionando sua saida para o awk, que ja recebeu os registros ordenados
em funcéo do primeiro campo.

3.3.5 Variaveis

Nota-se no exemplo da Figura gue nao foi passada, na linha de comando, a
informacéo referente ao delimitador de campos. Essa informacao foi passada a variavel de
sistema FS dentro do procedimento do padrao BEGIN.

O Awk possui outras variaveis de sistema, onde as principais e mais utilizadas sao
apresentadas na Tabela[3.4] A Figura[3.33mostra o script relatorio3.awk fazendo uso
das variaveis FNR NR além da variavel FS. O seu resultado pode ser visto na Figura[3.34]

O usuério pode definir suas variaveis e estas ndo precisam ser declaradas antes de
seu primeiro uso. As variaveis podem ser do tipo string ou numérica. Dependendo do
contexto em que serd empregada, o Awk podera tratd-la como nimero ou como string.

76

EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$ cat estoque.txt | sort | awk -f relatorio2.awk

Produto Quantidade Valor
arroz 32 2.10
detergente 27 1.40
farinha 36 1.90
feijao 16 2.75
fosforo 26 0.45
goiabada 12 4.30
lampada 8 1.64
oleo de soja 54 2.25
sabao em barra 41 0.35
sabonete 85 0.80

Quantidade total de produtos: 337
Capital empregado: R$ 497.67

Figura 3.32: Resultado do script relatorio2.awk

Tabela 3.4: Variaveis de sistema usadas no Awk.

Variavel Descricao

FNR Numero do registro.

FS Separador de campos utilizado na entrada.

NF Quantidade de campos do registro atual.

NR Quantidade de registros do arquivo de entrada.
OFS Separador de campos utilizado na saida.

ORS Separador de registros utilizado na saida.

RS Separador de registros utilizado na entrada.

Os ultimos exemplos ja vinham empregando variaveis definidas pelo usuario: produtos

capital e valor

3.3.6 Funcdes Internas

O Awk, a exemplo de outras linguagens de programacéo como C, Perl e Pascal, possui
funcBes pré-definidas j4 prontas para o usuério utilizar. As tabelas a seguir descrevem

Sed, Awk e Expressfes Regulares 77

BEGIN { FS = "}"
printf "\n%4s __%10s_%14s %9s\n" , "ftem" , "Produto" , "Quantidade" , "Valor"
print "

}
{ produtos += $2

capital += $2*$3

valor += $3
printf "%-4s _,_%-15s _%5s %7s %4.2fin" , FNR, $1, $2, ™, $3
}
END { print
printf "Quantidade _total _de_produtos: _%d\n", produtos

printf "Capital _empregado: _R$ _%4.2f\n" , capital
printf "Valor _médio _de_preco: _R$ %4.2\n\n" , valor/NR

Figura 3.33: Script usando variaveis de sistema.

[prompt]$ awk -f relatorio3.awk estoque.txt

ftem Produto Quantidade Valor
1 farinha 36 1.90
2 oleo de soja 54 2.25
3 sabonete 85 0.80
4 detergente 27 1.40
5 sabao em barra 41 0.35
6 feijao 16 2.75
7 arroz 32 2.10
8 lampada 8 1.64
9 goiabada 12 4.30
10 fosforo 26 0.45

Quantidade total de produtos: 337
Capital empregado: R$ 497.67
Valor médio de prego: R$ 1.79

Figura 3.34: Resultado do script relatorio3.awk

resumidamente a maioria das func¢des utilizadas, divididas conforme suas aplicacdes. Para
maiores informacgdes sobre essas fungdes, o autor recomenda a leitura do manual do Aw.

As funcdes aritméticas mais utilizadas sédo mostradas na Tabela[3.5]

A Tabela [3.6] mostra as principais fungdes para tratamento de strings.

4Comando man awk

78 EDITORA - UFLA/FAEPE - Automacéao de Tarefas
Tabela 3.5: Funcdes Aritméticas do Awk.
Funcdo Descricao
sin(x) Calcula o seno de x.
cos(x) Calcula o cosseno de x.
log(x) Calcula o logaritmo natural de x.
exp(x) Calcula o exponencial de x.
sqrt(x) Calcula a raiz quadrada de x.
Tabela 3.6: Fungdes de string do Awk.
Funcéo Descricao

gsub(expressao,stringl,string2)

index(substring,string)

length(string)

match(string,expressao)

sub(expresséao,string1,string2)

substr(string,m,n)

Substitui toda expressdo encontrada na
string2 por stringl

Retorna a posi¢cdo da substring dentro
da string

Retorna o comprimento de string

Retorna a posicdo em string onde
expressao encontra correspondéncia.

A primeira expressao encontrada em
string2 é substituida por stringl

Retorna a subcadeia que comeca na posi-
¢do mde string com n caracteres.

3.3.7 Estruturas Condicionais

As estruturas condicionais if

e else funcionam da mesma forma e com a mesma

sintaxe da utilizada na linguagem C. A estrutura basica é mostrada na Figura [3.35] Se a
condigao testada for verdadeira, as instru¢des definidas no bloco if seréo executadas. Se

for falsa, serdo executadas as instrucdes do else .

Se houver apenas uma instrucdo no

bloco, ndo havera necessidade de se usar as chaves ({}). Um exemplo do uso do if e do

else pode ser visto na Figura[3.36], onde o script barato.awk

informa o produto que tem

o0 menor preco. O resultado da execucéo do script pode ser visto na Figura (3.37|

Sed, Awk e Expressfes Regulares 79

if (expressao)
{
instrucéol
instrucéo?2
}
else
{
instrucéol
instrugao?
}
Figura 3.35: Formato basico da estrutura condicional if -else no Awk.
BEGIN { FS="}"

minpreco=9999 }

if ($3 < minpreco)
{
barato=$1
minpreco=$3

}

END { printf "Produto _mais _barato _é_%s que_custa _R$_%3.2f _\n" ,barato,minpreco }

[

Figura 3.36: Exemplo de uso da estrutura condicional if -else .

[prompt]$ awk -f barato.awk estoque.txt
O produto mais barato é o(a) sabao em barra que custa R$ 0.35

Figura 3.37: Resultado do script barato.awk

3.3.8 Estruturas de Repeticao

Assim como as estruturas condicionais (Se¢ao[3.3.7), as estruturas de repeti¢édo pos-
suem a mesma forma e sintaxe da utilizada na linguagem C. O formato basico da estrutura
de repeti¢do while é mostrado na Figura[3.38] As instrugdes contidas no interior do bloco
serdo executadas enquanto a condicdo testada for verdadeira.

Outra estrutura de repeticao € o for , e o formato basico de sua estrutura é mostrado
na Figura[3.39] A expressdol inicializa uma variavel de loop; a expressdo2 impde uma
condicéo para o loop ser executado; e a expressdo3 define como a variavel de loop sera
modificada.

O Awk também possui instru¢des que provocam desvios nas estruturas de repeticdo.
A Tabela[3.7] explica o funcionamento dessas instrucdes.

80 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

while (expresséo)
{
instrucdol
instrucdo?2

Figura 3.38: Formato basico da estrutura de repeticao while

for (expressdol; expressdo2; expressdo3)
{
instrucdol
instrucéo?2

Figura 3.39: Formato basico da estrutura de repeticao for .

Tabela 3.7: Instru¢des que provocam desvios has estruturas de repeticao.

Instrucdo Descricao
break Encerra a execucao do loop, seja um for ou um while

continue Interrompe a iteracéo atual do loop, seja um for ou um while , comecando
uma nova iteragao.

exit Interrompe a leitura do arquivo de entrada, e executa o padrdo END caso
exista.
next Pula para o préximo registro.

3.3.9 \Vetores

O Awk também permite o uso de vetores. Assim como as variaveis, 0s vetores ndo
precisam ser declarados antes de seu primeiro uso. A sintaxe dos vetores € parecida com
a utilizada pela linguagem Pascal, onde o indice do vetor vem entre colchetes ([]). A
Figura[3.40|mostra um exemplo da sintaxe utilizada com os vetores.

usuario[2] = "fulano” ‘

Figura 3.40: Sintaxe utilizada para vetores.

Uma caracteristica importante do Awk é que os indices dos vetores ndo precisam
ser numéricos, podendo ser strings também. Isso é semelhante a estrutura hash em Perl

Sed, Awk e Expressfes Regulares 81

(Secgéo [4.3.3). Um exemplo utilizando os recursos de vetores indexados por valores nao
numéricos é mostrado na Figura [3.41], onde se construiu um contador de ocorréncia de pa-
lavras. Ao final da execucao, o script retorna uma lista com todas as palavras encontradas
num texto com a respectiva quantidade de ocorréncias. Um arquivo texto é composto de
palavras separadas por um espago em branco. Cada linha do texto é considerada um regis-
tro e cada palavra da linha, um campo. O primeiro for percorre todas as palavras (campos)
da linha (registro), e guarda a informacao no vetor quantidade , que é indexado por cada
palavra diferente encontrada no texto. O segundo for imprime o resultado, ordenado nu-
mericamente (-n) com o comando sort , em ordem decrescente (-r). A Figura[3.42]mostra
o resultado da execugéao do script contador.sh

{

for (palavra = 1; palavra <= NF; palavra ++)
guantidade[$palavra] ++
}
END {
for (palavra in quantidade)
print quantidade[palavra], palavra | "sort _-nr"

Figura 3.41. Exemplo de uso de vetores.

(I
[prompt]$ awk -f contador.awk meutexto.txt

0]

Linux

é

um

sistema
operacional
e

onus.
software
sistemas

P P P NMNDNMNDNMNDNDNDND O

e
-

Figura 3.42: Resultado do script contador.awk

3.4 EXEMPLO — CONSTRUINDO UMA LIXEIRA: PARTE 2/2

No Capitulo [2, Secéo [2.10} deu-se inicio a construcéo da “lixeira”, onde foi desenvol-
vido um script de nome lixo.sh com a finalidade de mover os arquivos que 0 usuario
informasse para um diretdrio chamado .lixeira , localizado dentro do diretdrio padréo do

82 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

usuéario. Antes de mover o arquivo para a “lixeira”, o script lixo.sh anexava ao arquivo
informacdes Uteis para a sua restauracao.

A segunda e ultima parte deste exemplo consiste em elaborar um script capaz de
exibir a relagcdo dos arquivos na “lixeira”, restaurar um determinado arquivo para a sua
origem e esvaziar a “lixeira”.

3.4.1 Script lixeira.sh

E importante que o leitor saiba que, por se tratar de um exemplo didatico e, apesar de
todos os esforcos e testes realizados, o autor ndo pode garantir que os scripts lixo.sh e
lixeira.sh funcionardo corretamente para todos os tipos de arquivos, podendo, no caso
de falhas, haver a perda total de dados dos arquivos manipulados. Recomenda-se que 0
leitor faca testes antes em arquivos sem importancia, até adquirir uma certa confianca nos
scripts utilizados no exemplo.

O script lixeira.sh € executado de forma interativa com o usuario, através de me-
nus. No menu inicial o usuario pode selecionar entre: “Exibir contetdo”, “Restaurar arqui-
vos”, “Esvaziar lixeira” e “Sair”. A parte do codigo responsavel pela elaboracdo do menu é
apresentada na Figura[3.43]

clear

echo -e "\n\t\tt _LIXEIRA _\n"

echo -e "WO _que_vocé _deseja _fazer?\n"
PS3="

Digite _0,_numero de_sua_opcdo:
select opcao in "Exibir _conteddo" \
"Restaurar _arquivos" \
"Esvaziar _Lixeira" \
"Sair"
do
echo -e "\nVocé _escolheu _$opcao\n”
case $REPLY in
"1") exibe

"2") restaura

"3") e”svazia
"4") greak
*) ;cho "Opcéo _invalida!"
esac ’
done

Figura 3.43: Cddigo do menu do script lixeira.sh

Sed, Awk e Expressfes Regulares 83

De acordo com a Figura[3.43, o menu faz referéncia a trés fungdes: exibe() , restaura()
e esvazia()

A funcao exibe() utiliza o comandols -l para listar o conteudo da lixeira, e redire-
ciona sua saida para um codigo em Awk, que formata um relatério para ser exibido na tela.
O cédigo da fungéo exibe() & mostrado na Figura[3.44]

exibe ()
{
DIR_LIXEIRA= "$HOME!/ lixeira"
for arquivo in $(Is $DIR_LIXEIRA)
do
DIR_ORIGEM="tail -1 $DIR_LIXEIRA/$arquivo’
echo "$DIR_ORIGEM"
done
Is -| $DIR_LIXEIRA | awk 'BEGIN { printf "%50s\n"
"Contetido _da_Lixeira\n"
printf "%22s %22s_%10s_%9s %17s\n" |
"Arquivo" , "Data" , "Hora" , "Tamanho" ,
"Origem" }

printf "%35s _%12s_%7s %9s\n" , $8, $6, $7, $5 }

Figura 3.44: Cadigo da fungéo exibe()

A funcdao restaura() solicita do usuério o nome completo do arquivo a ser restau-
rado e verifica se realmente o arquivo esta presente na “lixeira”. Nao havendo erros, €
extraida uma informacé&o contida na ultima linha do arquivo a ser restaurado, informando
o nome do diretério de origem. Essa linha foi incluida pelo script lixo.sh (Se¢&o[2.10.1]
pagina [55). Com o comando sed é recriado o arquivo original, sem a Ultima linha que ha-
via sido inserida, e gravado no diretério de origem. O codigo da funcéo restaura() é
mostrado na Figura[3.45]

A funcdo esvazia() remove todos os arquivos do diretério .lixeira , provocando
um efeito de “esvaziamento da lixeira”. O codigo da funcdo esvazia() € mostrado na
Figura|3.46|

O cédigo completo do script lixeira.sh pode ser visto nas Figuras e[3.48.

3.5 EXPRESSOES REGULARES

3.5.1 Caracteristicas Gerais

As Expressbes Regulares, também conhecidas como “regexp”, sdo um conjunto de
caracteres alfanuméricos e/ou metacaracteres, que combinados entre si de acordo com

84 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

restaura ()
{
echo -n "Entre _com_o_nome_do_arquivo _a_ser _restaurado:
read arquivo
DIR_LIXEIRA= "$HOME!/ lixeira"

if [! -f $DIR_LIXEIRA/$arquivo]

then
echo -e "\n$arquivo _ndo_existe."
continue

fi
DIR_ORIGEM="tail -1 $DIR_LIXEIRA/$arquivo*
sed '$d’ $DIR_LIXEIRA/$arquivo > $DIR_ORIGEM/$arquivo
grep -v $DIR_ORIGEM $DIR_LIXEIRA/$arquivo > $DIR_ORIGEM/$arquivo
rm $DIR_LIXEIRA/$arquivo
echo -e "\n$arquivo _restaurado _em $DIR_ORIGEM."

Figura 3.45: Cddigo da funcéo restaura()

esvazia ()
{
DIR_LIXEIRA= "$HOME/ lixeira"
[-d $DIR_LIXEIRA] && { echo -e "Arquivos _ficardo _sem_coépia _de_seguranca\n”
rm -i $DIR_LIXEIRA/*

}
[-d $DIR_LIXEIRA 1 || echo -e 'Lixeira _Vazia!"

Figura 3.46: Cddigo da fungéo esvazia()

algumas regras, sédo capazes de extrair informacdes dentro de textos. Sao muito utilizadas
em conjunto com os comandos da familia grep , Sed, Awk, Perl, C/C++, editores de textos
como Vi, Emac e varios outros. Ha pequenas diferencas de sintaxes utilizadas, variando em
funcdo da aplicacdo que esta usando as Expressdes Regulares. Por exemplo, sua sintaxe
no Awk pode diferir ligeiramente da sintaxe utilizada em Sed. Mas em geral, as regras se
aplicam a todos os programas, variando apenas a sintaxe.

Este texto enfoca o uso das Expressdes Regulares no Awk e no Sed. No Capitulo [4]
as Expressdes Regulares serao tratadas no contexto de Perl.

3.5.2 Metacaracteres

A Tabela[3.8)mostra os metacaracteres utilizados em Expressdes Regulares, seus sig-
nificados e respectivos exemplos de uso. As Expressdes Regulares utilizadas nos exemplos
estdo no seguinte formato: /Expressdo Regular/ . O leitor pode encontrar informacdes
mais completas em [Friedl (2002)| e [Jargas (2002)].

Sed, Awk e Expressfes Regulares 85

#l/bin/bash

exibe ()
{
DIR_LIXEIRA= "$HOME!/ lixeira"
for arquivo in $(Is $DIR_LIXEIRA)
do
DIR_ORIGEM="tail -1 $DIR_LIXEIRA/$arquivo’
echo "$DIR_ORIGEM"
done
Is -| $DIR_LIXEIRA | awk 'BEGIN { printf "%50s\n"
"Contetdo _da_Lixeira\n"
printf "%22s %22s_%10s_%9s %17s\n" ,
"Arquivo" , "Data" , "Hora" , "Tamanho" ,
"Origem" }

printf "%35s _%12s_%7s %9s\n" , $8, $6, $7, $5 }

restaura ()
{
echo -n "Entre _com_o_nhome_do_arquivo _a_ser _restaurado:
read arquivo
DIR_LIXEIRA= "$HOME/ lixeira"
if [! -f $DIR_LIXEIRA/$arquivo]
then
echo -e "n$arquivo _ndo_existe."
continue
fi
DIR_ORIGEM="tail -1 $DIR_LIXEIRA/$arquivo’
sed '$d’ $DIR_LIXEIRA/$arquivo > $DIR_ORIGEM/$arquivo
grep -v $DIR_ORIGEM $DIR_LIXEIRA/$arquivo > $DIR_ORIGEM/$arquivo
rm $DIR_LIXEIRA/$arquivo
echo -e "\n$arquivo _restaurado _em $DIR_ORIGEM."

}
esvazia ()
{

DIR_LIXEIRA= "$HOME/ lixeira"

[-d $DIR_LIXEIRA] && { echo -e "Arquivos _ficardo _sem_copia _de _seguranca\n”

rm -i $DIR_LIXEIRA/*
}

[-d $DIR_LIXEIRA 1 || echo -e 'Lixeira Vazia!"

}

Figura 3.47: Cddigo completo do script lixeira.sh

Quando usados com o sed, os caracteres “() ” (parénteses) e “{} ” (chaves) devem
vir precedidos por uma “\” (barra invertida).

86 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

clear
echo -e "\n\t\tt _LIXEIRA _\n"
echo -e "WO _que_vocé deseja _fazer?\n"
PS3="
Digite _0,_numero _de_sua_opcéo:
select opcao in "Exibir _contetdo" \
"Restaurar _arquivos" \
"Esvaziar _Lixeira" \
"Sair"
do
echo -e "\nVocé _escolheu _$opcao\n'
case S$REPLY in
"1") exibe

"2") restaura

"3") esvazia

"4") break

*) echo "Opgédo _invalida!
esac
done

Figura 3.48: Cadigo completo do script lixeira.sh (continuacao).

Um exemplo mais completo e de aplicacao real, usando Expressfes Regulares, pode

ser visto na Sec¢éo |4.10| pagina[118|

Sed, Awk e Expressfes Regulares 87

Tabela 3.8: Caracteres Especiais em Expressfes Regulares

Caracter

Descricéo

I

{n,m}

0

[]

0 “ponto” corresponde a qualquer caracter individual. Ex: /.ola/ combina com
bola , cola e 2ola ;

0 “asterisco” corresponde a zero ou mais ocorréncias, da Expressdo Regular ime-
diatamente anterior. Ex: /65* combina com 6, 65, 655, 6555, e assim por
diante;

0 “mais” corresponde a uma ou mais ocorréncias, da Expressédo Regular imediata-
mente anterior. Ex: /65+/ combina com 65, 655, 6555, e assim por diante;

a “interrogacdo” corresponde a zero ou uma ocorréncia, da Expressdo Regular
imediatamente anterior. Ex: /65?/ combina somente com 6 e 65;

o ‘“circunflexo” corresponde a Expressdo Regular imediatamente posterior, so-
mente se ela estiver no inicio da linha. Ex: / 65/ combina com 6543, 65ar3jt
se, e somente se, essas expressdes estiverem no inicio da linha;

0 “ddlar” corresponde a Expressdo Regular imediatamente anterior, somente se
ela estiver no final da linha. Ex: /65%/ combina com 8765, ft43hhv65 |, se, e
somente se, essas expressdes estiverem no final da linha;

a “barra invertida” desativa o significado especial do caractere imediatamente pos-
terior. Ex: /65 \+43 combina com 65+43=108 ;

0 “par de colchetes” corresponde com qualquer um dos caracteres incluidos. Um
hifen (-) indica um conjunto de caracteres consecutivos. Ex: /[65]/ combina
com 6 ou com 5;

0 “par de chaves” corresponde a um intervalo de ocorréncias da Expressao Regular
imediatamente anterior, onde n significa 0 menor nimero de ocorréncias e m o
maior nimero de ocorréncias. Se for especificado {n,} significa qualquer nimero
de ocorréncias acima de n. Se for {{m} significa um méaximo de mocorréncias.
Ex: /65{2,4}/ combina com 655, 6555 e 65555; /65{3}/ sO combina com
6555 ; /65{,2}/ combina com 6, 65 e 655; /65{2,}/ combina com 655, 6555,
65555, e assim por diante;

0 “par de parénteses”, além de agrupar uma Expressado Regular, salva o texto, cor-
respondido com a Expressao Regular que esta no interior dos parénteses, em uma
area de armazenamento especial. Até nove padrdes podem ser salvos em uma
Unica linha. Eles séo recuperados pelas sequencias de escape \1 a \9. Ex: /(0)
(doce) perguntou para \1 \2 qual era \1 \2 mais \2/ combina com
0 doce perguntou para o doce qual era o doce mais doce ;

a “barra vertical” corresponde a Expressdo Regular especificada imediatamente
antes ou depois. Ex: /senhor(es|as)/ combina com senhores e senhoras ;
0 “circunflexo” como primeiro caracter dentro do par de colchetes corresponde
a qualquer caracter, exceto os que estdo dentro do par de colchetes. Ex:
/["(janelas)] corresponde a qualquer palavra exceto janelas

88

EDITORA - UFLA/FAEPE - Automacéao de Tarefas

PERL

4.1 INTRODUCAO

Perl — “Practical Extraction and Report Language” foi criada por Larry Wall na década
de 80, sendo uma linguagem que nasceu para facilitar a manipulagéo de textos, suprindo as
necessidades que o Sed, Awk e o shell ndo eram capazes de resolver. E uma linguagem
que facilita muito a extracdo de informacdes de dentro de arquivos de registro, também
conhecidos como arquivos de log. Pelos seus recursos e sua flexibilidade, e além de ter
0 codigo aberto e estar licenciada nos termos da GP, também é muito utilizada para
confeccdo de paginas Web, através de arquivos CGIH.

Como o objetivo deste texto é o desenvolvimento de ferramentas para automacéo de
tarefas em Linux, sera dado enfoque para a extracdo de informac¢des, ou seja, manipulacéo
de textos. Ao final deste capitulo, o leitor sera capaz de desenvolver ferramentas de admi-
nistracao de sistemas, usando recursos da linguagem Perl. O capitulo sera finalizado com
a criacao de uma ferramenta para analise do arquivo de registros de acesso de um servidor
Web.

O leitor deve verificar se Perl esta instalado em seu sistema. Na grande maioria das
distribui¢cdes Linux ela ja vem instalada por padréo. Se caso ela ndo estiver instalada, o
leitor devera providenciar imediatamente a sua instalacéo para que possa prosseguir neste
capitulo. O site oficial da linguagem é http://www.perl.org . Seré utilizada neste texto
a versao 5.6, que € a Ultima versdo estavel na data em que este texto foi escrito.

Uma grande vantagem de Perl é a sua comunidade que, assim como a do Linux, cola-
bora com o seu desenvolvimento e uso. O maior exemplo € o CPAN — “Comprehensive Perl
Active Network”, que pode ser acessado em http://www.cpan.org . Nesse site é possi-
vel encontrar uma colecdo de modulos e bibliotecas que implementam muitas facilidades a
linguagem, além de uma extensa documentacao.

1General Public License — http://www.gnu.org/copyleft/gpl.html.
2Common Gateway Interface — sdo pequenos programas, rodados a partir do servidor, que permitem adi-
cionar varios recursos a uma pagina Web.

http://www.perl.org
http://www.cpan.org
http://www.gnu.org/copyleft/gpl.html.

90 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Para mais informagdes sobre a linguagem Perl, o autor recomenda a leitura dos manu-
ais, comecando por man perl , e também [Wall, et al. (2000)] e [Schwartz & Phoenix (2001)].

4.2 CARACTERISTICAS BASICAS DE PERL

Normalmente, Perl é utilizada para interpretar um script. Antes da execuc¢do, o in-
terpretador Perl ira compilar o cédigo, transformando-o numa representacédo mais eficiente
(conhecida como bytecode) que sera interpretada. Esse esquema permite que, antes de
sua execucao, seja feita a deteccao de erros de sintaxe, além de reduzir o tempo gasto com
a execucao.

4.2.1 O Primeiro Programa

O primeiro script ser& o tradicional “Ol& Mundo!”, como mostrado na Figura[4.1]

#!/usr/bin/perl -w

print "Ola _Mundo\n" ; # mostra na tela uma mensagem

Figura 4.1: Cddigo fonte do script olamundo.pl

O script foi gravado com o nome de olamundo.pl . Na verdade, ndo € necessario
colocar extensao, pois o Linux ja reconhecera o arquivo. Recomenda-se utilizar a extensao
.pl para que o leitor possa identificar que tipo de arquivo estéa lidando, sem precisar abri-lo
ou visualiza-lo. Poderia ser .perl ou qualquer outra.

Ha duas maneiras para se executar este script. A primeira e mais pratica seria dar
permissdo de execucgdo para o0 arquivo e depois executa-lo diretamente, como mostrado
na Figura[4.2l A permisséo de execugdo sera dada somente uma vez, antes da primeira
execucao.

[prompt]$ chmod +x olamundo.pl
[prompt]$./olamundo.pl
Ola Mundo!

Figura 4.2: Resultado da execucéo do script olamundo.pl

A segunda maneira seria chamar diretamente o interpretador Perl e passar o home
do arquivo como parametro. Neste segundo caso, ndo seria necessario dar permissao de
execucdo ao arquivo. Veja a Figura[4.3]

Este primeiro script, apesar de simples, fornece algumas noc¢des sobre a sintaxe de
Perl. A primeira linha informa ao sistema qual interpretador serd utilizado e s6 € necesséria

Perl 91

[prompt]$ perl olamundo.pl
Ola Mundo!

Figura 4.3: Executando o script olamundo.pl através da chamada do interpretador.

se o script for executado conforme a primeira maneira discutida anteriormente. Se o script
for executado de acordo com a segunda maneira, ou seja, chamando diretamente o inter-
pretador, ndo ha necessidade dessa primeira linha. Essa primeira linha deve ser ajustada
de acordo com a localizacao exata do interpretador Perl. Aconselha-se a sempre usar essa
linha, pois ela funcionara perfeitamente nas duas maneiras de se executar um programa
em Perl. A auséncia dessa linha fard com que o script s possa ser executado através da
chamada direta do interpretador Perl.

Pode-se reparar na semelhanca da segunda linha com programas feitos em C. Na
verdade, Perl incorpora semelhancas de sintaxe de varias linguagens. N&ao seria surpresa
alguma se Perl estiver parecido com Bash, C, C++ ou outra linguagem conhecida. Comen-
tarios podem ser inseridos em um programa através do simbolo “#” (assim como em Bash),
e qualquer texto apos ele, até o final da linha, sera ignorado (com excec¢do da primeira li-
nha). A Unica maneira de se usar comentarios longos é colocando-se “#” no inicio de cada
linha. Toda instrucdo em Perl deve terminar com um ponto-e-virgula, como na segunda
linha do script olamundo.pl . Uma outra semelhanca com a linguagem C é o uso de “ca-
racteres de escape”. Neste exemplo, foi usado o “\n” para indicar o caracter de mudanca de
linha. Alguns dos caracteres de escape mais utilizados podem ser vistos na Tabela[4.1] O
comando utilizado para exibicdo de informacgdes na tela foi o print . Nas proximas secdes
sdo apresentadas as diferencas entre usar aspas duplas ", apostrofo simples ’ e apostrofo
invertido * .

Tabela 4.1: Caracteres de escape em Perl.

Caracter Descricao

\n Indica mudanga de linha.

\r Cursor retorna ao inicio da linha

\t Avanca para a proxima posicao de tabulacao.

\f Avanca para a proxima pagina (em impressoras).
\b Cursor retorna um caracter.

\a Aviso sonoro.

92 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Para que o interpretador Perl fornecga avisos de qualquer coisa estranha com o cédigo
durante a execuc¢do, usa-se a op¢ao -w (w de warnings) na primeira linha do codigo (ver
Figura[4.4) ou executa-se o interpretador com a opgéo -w, conforme Figura[4.5|

#!/usr/bin/perl -w

print "Ola _Mundo\n" ; # mostra na tela uma mensagem

Figura 4.4: Usando a opc¢do -w na primeira linha do cédigo.

[[prompt]SB perl -w olamundo.pl J

Figura 4.5: Passando-se a op¢éo -w pela linha de comandos.

4.3 VARIAVEIS EM PERL

Basicamente, os tipos de dados em Perl se distinguem entre singular e plural. Strings
e numeros sdo dados no singular, enquanto que listas de strings e listas de nimeros sao
dados no plural. Na linguagem Perl, variaveis no singular sdo chamadas de scalar e varia-
veis no plural sdo chamadas de array e de hash. Variaveis do tipo scalar podem receber
qualquer tipo de valor escalar: inteiros, nimeros de ponto flutuante, caracter, string, e até
mesmo referéncias a outras variaveis. O mesmo ocorre com 0s arrays e hashs: pode-se ter
vetores de inteiros, de numeros de ponto flutuante, de caracter, de string, ou até mesmo de
tipos diferentes, por exemplo, um mesmo vetor contendo nimeros e strings.

O exemplo da Figura[4.1]sera reescrito utilizando uma variavel do tipo scalar. Observa-
se na Figura [4.6] que ndo houve a necessidade de se definir com antecedéncia o tipo da
variavel $frase . Através do simbolo “$” o interpretador Perl sabera que se trata de uma
variavel do tipo scalar, ou seja, contendo um Unico valor, que neste caso, € uma string. Uma
variavel do tipo array comecgaria com o simbolo “@. Uma maneira facil de se guardar qual
simbolo usar seria lembrar-se do seguinte: $calar e @rray. Ja o hash possui um simbolo
nao convencional: “%.

#!/usr/bin/perl
$frase = "Ola _Mundo\n" ; # define uma variavel scalar
print $frase; # mostra na tela uma mensagem

Figura 4.6: Usando uma variavel do tipo scalar.

Perl 93

4.3.1 Variavel scalar

Variaveis do tipo scalar séo variaveis que recebem apenas um valor, podendo ser
ndmero ou string. Veja na Figura[4.7]alguns exemplos de varidveis desse tipo.

namero inteiro

ndamero real

notacdo cientifica
string

saida de um comando
string com substituicao
string sem substituicdo

$numero = 25;

$pi = 3.141593;

$tensao = 1.38e4;

$nome = "fulano"

$comando = ‘Is -l

$chance = "Hoje _é dia _do_$nome." ;
$preco = 'O _prego € _R$2,50" ;

H OH H R H B R

Figura 4.7: Exemplos de variavel do tipo scalar.

O operador “=" atribui 0 contetdo da direita a variavel da esquerda. As variaveis nao
precisam ser inicializadas com algum valor. Se for usada uma variavel que nunca tenha
recebido um valor, essa variavel que ainda nao foi inicializada passa a existir normalmente.
Ela sera criada com valor nuloﬂ, seja™ ou 0, dependendo do contexto de onde ela esta
sendo utilizada.

As variaveis em Perl séo interpretadas automaticamente como strings, nimeros ou
valores booleanos (“true” ou “false”). Perl também podera converter automaticamente os
dados para o formato necessario ao contexto atual. Veja um exemplo na Figura[4.8]

#!/usr/bin/perl
$pontos = "14" ; # $pontos € um string.
print $pontos + 5, "\n" ; # $pontos age como numero.

Figura 4.8: Conversado automatica do tipo da variavel.

O valor original de $pontos € uma string. Ao ser somada ao numero 5, esta “string”
passa a responder como numero para ser somada, e depois é convertida novamente para
string para ser impressa como “19”.

Na Figura [4.7] pode-se observar que algumas variaveis receberam strings entre as-
pas duplas, entre aspas simples (apdstrofos) e entre apdstrofos inclinados (inclinados a
esquerda). Quando o valor esté entre aspas duplas podera haver substituicdo de variavel
pelo seu respectivo valor. Quando esta entre aspas simples, ndo podera haver substituicao
de variavel. E apostrofos invertidos executardo um programa externo e retornardo a saida
do programa, para que se possa apanha-la como uma unica string contendo todas as li-
nhas da saida. A Figura[4.9 mostra um exemplo de uso de strings e a Figura[4.10mostra o
resultado da saida.

94 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#!/usr/bin/perl
$conteudo = ‘Is;
print $conteudo;
$animal = “gato" ;
$preferencia = "Eu _gosto _de_$animal."
print $preferencia, "“\n"
$preferencia = 'Eu _gosto _de_$animal.’” ;
print $preferencia, \n'
Figura 4.9: Usando aspas duplas, simples e apdstrofo invertido.
(1
[prompt]$./exemplo.pl
barato.awk

contador.awk
conteudo.txt
erro.txt
estoque.txt

Eu gosto de gato.

Eu gosto de $animal.\n[prompt]$
- J

Figura 4.10: Resultado do uso de aspas duplas, simples e apéstrofo invertido.

Observa-se no exemplo da Figura gue o caracter de escape de final de linha é
representado por "\n" (entre aspas duplas), ja que se deseja mudar de linha. Quando
representado por ' \n’ , é impresso uma contra-barra seguida da letra “n”. Ou seja, dessa
forma o caracter de escape néo tem efeito algum.

4.3.2 Variavel array

Um array € uma lista de varios elementos do tipo scalar, indexados pela posicdo que
cada um ocupa na lista. A lista pode conter niUmeros, strings, ou uma mistura de ambos. A
Figura[4.11 mostra varios exemplos de array, e pode-se observar como se atribui valores a
um array, como se manipula individualmente um elemento do array, e como se pode definir
varias variaveis do tipo scalar a partir de um array.

Os elementos do array séo indexados a partir do 0. Com isso, o primeiro elemento do
array é referido através do indice 0. O segundo elemento do array € referido pelo indice
1, e assim sucessivamente. O indice do elemento é sempre um a menos que a pPosi¢ao
gue ele ocupa dentro do array. Este indice € sempre representado entre colchetes “[] ".
Um array se comporta como uma pilha, com um inicio e um final. Perl considera o ultimo
elemento do array como o topo de uma pilha.

3Também chamado de “valor n&o definido” (undef).

Perl 95

@fruta = ("banana" , "laranja" , "maca", "uva"'); # array de strings.

@megasena = (4, 15, 16, 25, 42, 48); # array de numeros.

@mistura = ("fusca" , "telefone" , 28); # array de strings e numeros.

$animal[0] = "gato" # definindo individualmente os

$animal[l] = "cachorro" ; # elementos de um array.

$animal[2] = "girafa" ;

$animal[3] = "elefante”

$carro = $mistura[0]; # manipulando um elemento de um array.
($vitamina, $bolo, $torta, $suco) = @fruta; # definindo escalares a partir

de um array.

Figura 4.11: Exemplos de variaveis do tipo array.

Um recurso muito Util utilizando variaveis de tipo array € o slice (fatia). Com o slice
pode-se extrair um pedaco de um array. A Figura[4.12) mostra um script fazendo o uso do
slice, e o resultado de sua execucéo pode ser visto na Figura[4.13] Observa-se que foram
extraidos do vetor @aos elementos de indice 2 a 4.

#!/usr/bin/perl
@a = (‘casa" , 23, 35, ‘"fumaga' , "aviao" , 12);
@b = @a[2..4];

print @b[0], "\n" ;
print ~ @b[1], "\n" ;
print ~ @b[2], "\n" ;

Figura 4.12: Script fazendo uso do slice.

[prompt]$./exemplo.pl
35

fumaca

aviao

Figura 4.13: Resultado da execucéo do script da Figura|4.12|

O indice do ultimo elemento de um array pode ser obtido através do operador “$#".
Este operador também pode ser utilizado para alterar a quantidade de elementos de um
array. Um exemplo é apresentado na Figura[4.14] e o resultado de sua execugdo pode ser
visto na Figural4.15] Alterando-se para mais, as posi¢oes extras recebem um valor “undef ”.
Se alterado para menos, os valores excedentes serdo perdidos.

96 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#!/usr/bin/perl

@frutas = ("banana" , ‘"laranja" , "magd" , "uva");

$ind_ult_elem = $#frutas;

print "Ndmero _de_elementos _do_vetor _frutas _(antes):" , $ind_ult_elem + 1, “\n"
$#frutas = 1;

$ind_ult_elem = $#frutas;

print "Ndmero _de_elementos _do_vetor _frutas _(depois):" , $ind_ult_elem + 1, “\n"

Figura 4.14: Script usando o operador $#.

[prompt]$./exemplo.pl
NUumero de elementos do vetor frutas (antes):4
Numero de elementos do vetor frutas (depois):2

Figura 4.15: Resultado da alteracdo do tamanho de um array.

Para criar um array com nameros inteiros consecutivos e em ordem crescente, usa-se

o operador “.. ". A sintaxe é mostrada na Figura[4.16]
@dias_mes = 1..31; # cria um array com 31 elementos numéricos ordenados.

Figura 4.16: Criando um array com ndmeros inteiros e consecutivos.

Pode-se copiar um array diretamente para outro. Se eles tiverem tamanhos diferentes,
0 array que receber os valores passara a ter 0 mesmo tamanho do outro array.

Um array pode ter a ordem de seus elementos invertida, através da fungéo reverse()
Nota-se que esta fungéo néo inverte a ordem do array original, e sim retorna um novo ar-
ray com a ordem dos elementos invertida. A Figura [4.17] mostra um script fazendo uso da
funcdo reverse() e a Figural[4.18 mostra o resultado de sua execucéo.

#!/usr/bin/perl

@frutas = ("banana" , "laranja" , "magd", "uva");
@saturf = reverse @frutas;

print @saturf, "\n" ;

Figura 4.17: Script usando a funcao reverse()

Uma outra funcéo parecida com a reverse() é asort() que permite ordenar os
elementos de um array por ordem Iexicogréfic. Por isso, ela ndo deve ser usada com

40s elementos s&o ordenados de acordo com o valor numérico do codigo ASCII utilizado para representar,
na memaria, os caracteres que compdem uma string. As strings sdo ordenadas como em um diciondrio.

Perl 97

[prompt]$./exemplo.pl
uvamagcalaranjabanana

Figura 4.18: Resultado da execugéo do script da Figura[4.17]

nameros, somente com strings. Da mesma forma que reverse() , sort() retorna um
novo array com os elementos em ordem. A Figura [4.19 mostra um script fazendo uso da
funcdo sort() e a Figura mostra o resultado de sua execucéo.

#!/usr/bin/perl

@animais = ("gato" , "cachorro" , "girafa" , "elefante");
@ordem = sort @animais;
print "Animais _em ordem: " ,@ordem, "\n"

[

Figura 4.19: Script usando a funcéo sort()

[prompt]$./exemplo.pl
Animais em ordem: cachorroelefantegatogirafa

Figura 4.20: Resultado da execugéo do script da Figura[4.19

Como Perl trata um array como se fosse uma pilha, ha fungbes para inserir e re-
mover elementos no topo e na sua base. As funcdes push() e pop() inserem e remo-
vem, respectivamente, um elemento na Ultima posi¢cao de uma pilha (array). Ja as funcdes
unshift() e shift() fazem o mesmo, inserem e removem, respectivamente, s6 que
na base da pilha (array). As funcdes push() e unshift() podem receber uma lista de
elementos para inserir num array. Todos os elementos serdo inseridos no final ou inicio,
respectivamente, da lista. Um exemplo é mostrado na Figura [4.21]

#!/usr/bin/perl
@frutas = ("banana" , "laranja" , "magd", "uva");
push @frutas, "goiaba" ; # insere goiaba na ultima posigao.
unshift @frutas, ("péra" , "ameixa"); # insere péra e ameixa antes
de banana.

Figura 4.21: Script usando as fungdes de insercdo e remog¢ao de elemento num array.

4.3.3 Variavel hash

Um hash é um conjunto ndo ordenado de valores do tipo scalar, onde seus elementos
sdo indexados por uma string. No caso do array, os elementos sédo indexados por nUmeros,

98 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

onde esses numeros representam a posi¢cao que o elemento ocupa dentro do array me-
nos 1. No hash, os elementos ndo tem posicdo definida, e a Unica ordem existente é que
cada elemento possui sua respectiva chave do tipo string. Nao podera haver duas chaves
iguais.

Um hash nao possui inicio ou fim, ficando, dessa forma, impossivel utilizar as funcdes
push() , pop() , unshift() e shift() . Para que sejam fornecidos valores a um hash,
precisa-se informar também a sua chave. As Figuras |4.22 |4.23| e [4.24] mostram exemplos
de atribuicdes de valores a um hash.

%mes = ('janeiro" , "jan" , "fevereiro" , "fev" | "margo" , "mar" , "abril" , "abr"
"maio” , "mai" ,"junho" ,"jun" ,"julho" ,"jul" |, “agosto” ,"ago" ,
"setembro" , "set" , "outubro" ,"out" , "novembro" , "nov" , "dezembro" , "dez");

Figura 4.22: Criando um hash a partir de uma lista.

%mes = ("janeiro" = "jan" ,
"fevereiro” => "fev" |,
"margo” => "mar" ,
"abril" => "abr" ,
"maio" => "mai" ,
"junho” => "jun"
“julho” = "jul"
"agosto” => "ago" ,
"setembro” => "set" ,
"outubro" => "out" ,
"novembro” => "nov"
"dezembro" => "dez");

Figura 4.23. Usando o sinal => para se criar um hash.

A Figura [4.22] cria um hash a partir de uma lista de valores. O primeiro elemento da
lista torna-se chave do segundo elemento, o terceiro elemento serd a chave do quarto, e
assim em diante. Esse € um método de criacdo de hash dificil de se ler. Usando o sinal “=>"
como na Figura[4.23] torna a leitura da operagéo de criagdo de um hash mais facil. Pode-se
também fornecer os pares individualmente, como mostrado na Figura [4.24] O hash %mes
contém a abreviacdo do nome dos meses, com trés letras, e como chaves, os nomes dos
meses por extenso.

A Figura [4.25 mostra um exemplo utilizando hash, onde se pode observar a extragdo
de valores de um hash. Dada uma chave, obtém-se um valor, e nunca o contrario. Observa-
se 0 uso do sinal $ por se tratar de um scalar, e ndo % que indicaria um hash inteiro. O
resultado desse script pode ser visto na Figura [4.26]

Perl

99

$mes{ "“janeiro" } = jan"
$mes{ "fevereiro" } = "fev' ;
$mes{ "margo” } = "mar" ;
$mes{ "abril" } = "abr" ;
$mes{ "maio" } = "mai" ;
$mes{ "junho" } = "jun" ;
$mes{ "julho" } = "jul" ;
$mes{ "agosto" } = "ago" ;
$mes{ "setembro" } = "set" ;
$mes{ "outubro” } = “out"
$mes{ "novembro" } = "nov" ;
$mes{ "dezembro" } = "dez" ;
Figura 4.24: Criando um hash através de entradas individuais.
#!/usr/bin/perl
$idade{ “fulano" } = 35
$idade{ "ciclano" } = 28;
$idade{ "beltrano" } = 42
print “A_idade _de_fulano _é _S$idade{fulano} _anos.\n"
print "A_idade _de_ciclano _é_S$idade{ciclano} _anos.\n"
print "A_idade _de_beltrano _¢é_S$idade{beltrano} _anos.\n" ;

Figura 4.25: Exemplo de uso da variavel hash.

[prompt]$./exemplo.pl

A idade de fulano é 35 anos.

A idade de ciclano é 28 anos.
A idade de beltrano é 42 anos.

Figura 4.26: Resultado da execugéo do script da Figura[4.25

Pode-se transformar hash em array e vice-versa. A Figura mostra um exemplo
de um hash se transformando em array e o resultado é exibido na Figura[4.28]

A funcao keys() fornece uma lista das chaves de um hash. Ja a fungéo values()
retorna uma lista com os valores. A funcao exists() verifica se ha uma determinada
chave no hash, retornando um valor booleano. A funcéao delete() = apaga a chave e o seu
respectivo valor. A Figura[4.29 mostra um exemplo com o uso dessas funcdes.

Se uma variavel hash nao tiver valores repetidos, é possivel inverter as chaves com
os valores, atraves da funcéo reverse() . Um exemplo é apresentado na Figura|4.30|

100 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#!/usr/bin/perl

$idade{ "fulano" } = 35;
$idade{ "ciclano" } = 28;
$idade{ "beltrano" } = 42;

@vetor_idade = %idade;

print "Primeiro _elemento _de_vetor_idade _é_$vetor_idade[0].\n"
print “Segundo _elemento _de _vetor_idade _é_$vetor_idade[1].\n"
print "Terceiro _elemento _de_vetor_idade _é _$vetor_idade[2].\n"
print "Quarto _elemento _de _vetor_idade _é_$vetor_idade[3].\n" ;
print "Quinto _elemento _de _vetor_idade _é_$vetor_idade[4].\n" ;
print "Sexto _elemento _de_vetor_idade ¢ $vetor_idade[5].\n" ;

Figura 4.27: Transformando hash em array.

[prompt]$./exemplo.pl

Primeiro elemento de vetor_idade é beltrano.
Segundo elemento de vetor_idade é 42.
Terceiro elemento de vetor_idade é ciclano.
Quarto elemento de vetor_idade é 28.
Quinto elemento de vetor_idade é fulano.
Sexto elemento de vetor idade é 35.

Figura 4.28: Resultado da execugéo do script da Figura|4.27|

4.4 OPERADORES

Esta secdo apresenta alguns dos principais operadores utilizados em Perl. Eles estao
classificados de acordo com os dados manipulados. A maioria deles é similar aos utilizados
em C, Sed ou Awk.

4.4.1 Operadores Aritméticos

Os operadores aritmeéticos realizam opera¢cdes matematicas, de acordo com as regras
matematicas, ou seja, sado avaliados na ordem de precedéncia conhecida na matematica.
Por exemplo: primeiro exponenciacdo, depois multiplicacdo e por dltimo soma. Pode-se
usar parénteses para alterar esta ordem. A Tabela[4.2l mostra os principais operadores com
respectivos exemplos.

Perl

101

#!/usr/bin/perl

%mes = ("janeiro" => "jan"
"fevereiro" = "fev"
"margo” => "mar
"abril" => "abr
Ilmaioll => llmaIH
"unho” => "jun"
"ulho” => "jul"
"agosto” => "ago
"setembro” => "set
"outubro" => "out"
"novembro” => "nov"
"dezembro” => "dez"

@mes_extenso = keys %mes;

print "@mes_extenso\n" ;

@mes_abreviado = values 9%mes;

print "@mes_abreviado\n"

$simnao = exists $mes{maio};

print ~ "$simnao\n" ;

delete $mes{dezembro};

@sem_dezembro = %me
print

S;

"@sem_dezembro\n" ;

’

);

Extrai as chaves do

Extrai os valores do

hash.

hash.

Retorna verdadeiro se a chave maio existe.

Elimina a chave com seu respectivo valor.
Converte hash em array.

Figura 4.29: Usando as fun¢des keys()

, values()

, exists()

Tabela 4.2: Operadores Aritméticos.

Operador Nome Exemplo

+ Adicao $a + $b
- Subtracao $a - $b
* Multiplicacéo $a * $b
/ Divisdo $a / $b

% Resto de divisdo $a % $b
o Exponenciagcdo $a ** $b

e delete()

102 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#!/usr/bin/perl

%mes = ("janeiro" => "jan" ,
"fevereiro" = "fev" ,
"margo” => "mar"
"abril" => "abr" ,
"maio" => "mai" ,
“junho” => "jun"
"julho” => "jul"
"agosto” => "ago"
"setembro” => "set" |,
"outubro" => "out" ,
"novembro" => "nov" ,
"dezembro" => "dez"),

%inv_mes = reverse %mes;

print "A_abreviatura _de_S$inv_mes{mai} _é_$mes{maio}.\n" ;

Figura 4.30: Invertendo chaves com valores numa variavel hash.

4.4.2 Operadores de String

Existem também operadores de “adicao” e “multiplicacao” de strings. Na realidade ha
concatenacgdo e repeticdo de strings. A Tabela mostra 0s operadores de string com
respectivos exemplos.

Tabela 4.3: Operadores de string.

Operador Nome Exemplo
Concatenagédo $a = "Ola " e $b = "Mundo!" , $a.$b = "Ola
Mundo!"
X Repeticdo $a = "pbil " e $b =3, %a x $b = "bi'! bi!
bil"

O operador de repeticéo (x) pode parecer sem muito valor, mas em certas ocasifes é
muito Gtil. Um exemplo pode ser visto na Figura e seu resultado na Figura |4.32|

4.4.3 Operadores de Atribuicdo

O operador de atribuicdo “=" tem sido utilizado em quase todos os exemplos. Ele
representa uma atribuicdo simples, ou seja, determina o valor da expressao no seu lado
direito e depois atribui esse valor a variavel no lado esquerdo. Ele equivale ao “=" no
Pascal. N&o se pode confundir este operador de atribuigdo com o operador de igualdade

Perl 103

#!/usr/bin/perl
$n = 40;
print "=*" x $n , "\n" ;
Figura 4.31: Utilizando o operador de repeticao.
{[prompt]ﬂs Jexemplo.pl J
Figura 4.32: Resultado da execugéo do script da Figura|4.31]
“==". O operador “==" retorna um valor booleano enquanto “=" atribui valor a uma variavel.

Na Figura pode-se observar exemplos do uso deste operador.

#!/usr/bin/perl

$i = 5; # Atribuindo 5 a variavel i.

$i =& + 1 # Somando 1 a variavel i e atibuindo o resultado a
prépria variavel i.

Figura 4.33: Utilizando operadores de atribuigéo.

Nota-se na dltima expressdo do exemplo da Figura [4.33| que a variavel “$i ” foi cha-
mada duas vezes, uma de cada lado do operador. Existem atalhos em Perl, semelhantes
aos utilizados em C, que simplificam esta expresséo. A Tabela[4.4) mostra alguns exemplos
desses atalhos e seus resultados.

Tabela 4.4: Atalhos para operadores de atribuicao.

Exemplo Descricao
$a += 2 O mesmo que $a = $a + 2

++%a ou $a++ Somal a $a

-$a ou %a- Subtrai 1 de $a
$b = $a++ O valor de $a é atribuido a $b, depois que $a é incrementado.
$b = ++%a Primeiro $a € incrementado e somente depois € atribuido a $b.

104 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

4.4.4 Operadores Logicos

Perl, como vérias outra linguagens de programacao, utiliza l6gica de curto-circuito.
Assim, os operadores l6gicos podem ser utilizados para encurtar algumas linhas de cadigo.
Dessa forma, é possivel pular a avaliagcdo do seu argumento da direita se ficar decidido que
o argumento da esquerda ja forneceu informacdes suficientes para decidir o valor geral.
Funciona da mesma forma que em C e em Bash.

O exemplo da Figura[4.34] usa o operador “or ", que significa “ou”. No lado esquerdo
da expressdo é pedido que se abra o arquivoE] file.pl . Se tudo der certo, este lado
da expressao retornou “Verdadeiro”. Por estar usando o operador que significa “ou”, o
resultado final ja sera “Verdadeiro” independentemente se do lado direito da expressao der
“Verdadeiro” ou “Falso”. Ou seja, “o lado esquerdo ja forneceu informacdes suficientes para
decidir o valor geral”. Se o arquivo ndo conseguiu ser aberto, o lado esquerdo ira retornar
“Falso”. Ainda ndo podemos afirmar o resultado geral da expresséo e, entao, forca-se o
lado direito fazendo com que se imprima na tela uma mensagem de erro.

open /home/fulanoffile.pl or die "Impossivel _abrir _o_arquivo! \n"

[

Figura 4.34: Utilizando operadores légicos.

O resultado geral de uma expressao que possui o operador “and”, que significa “e”,
s6 sera “Verdadeiro” se ambos os lados da expressdo forem “Verdadeiros”. Portanto, se
o lado esquerdo for “Falso”, nem adianta executar o lado direito, pois o resultado geral ja
pode ser antecipado: “Falso”. A Tabela [4.5] mostra os operadores légicos no contexto de
“curto-circuito”.

Tabela 4.5: Operadores Légicos no contexto de “curto-circuito”.

Exemplo Nome Descricdo
$a && $b,%a and $b And $a se $a for falso, $b caso contrario

$a || $b ,%a or $b Or $a se $a for verdadeiro, $b caso contrério

I $a ,not $a Not verdadeiro se $a nédo for verdadeiro

$a xor $b Xor verdadeiro se $a ou $b for verdadeiro, mas nao
ambos

SDetalhes sobre abertura de arquivos s&o mostrados na Sec;éo

Perl 105

4.45 Operadores de Comparacao

Os operadores de comparacao informam como dois valores do tipo scalar se relacio-
nam entre si. Existem operadores de comparag&o para nimeros e para strings. A Tabela[4.6]
mostra 0s operadores de comparacao.

Tabela 4.6: Operadores de comparacéo.

Numero String Descricao

== eq Igual

I= ne Diferente

< It Menor

> ot Maior

<= le Menor ou igual

>= ge Maior ou igual

<=> cmp 0 seigual, 1 se maior, e -1 se menor

4.4.6 Operadores de Teste de Arquivo

Os operadores de teste de arquivo permitem que se teste os atributos de um arquivo
antes de serem utilizados. Por exemplo, pode-se verificar se um arquivo existe, se € execu-
tavel, se pode ser gravado, entre outras coisas. Alguns desses operadores estdo listados
na Tabela[4.7.

4.5 ESTRUTURAS DE CONTROLE

45.1 Estruturas Condicionais

if, else e elsif

Ainstrucdo if avalia uma expressdo booleana e executa um bloco de instrucdes se a
condicéo for verdadeira. Esse bloco contém uma ou mais instrucdes agrupadas por chaves
“{} ”. Essas chaves sempre serdo obrigatorias, mesmo se houver apenas uma instru¢do no
bloco. Em C é opcional o uso de chaves para blocos de apenas uma instrucéo.

Em caso da condicdo if nao for verdadeira, pode-se utilizar a instrucao else . Nesse
caso, o0 bloco seguinte a instrucéo else sera executado.

Existem situagbes em que h&a duas ou mais escolhas possiveis quando a condigdo
if n&o for aceita. Neste caso pode-se usar a funcéo elsif , que equivale a “else if”. As

106 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Tabela 4.7: Operadores de teste de arquivo.

Operador Nome Exemplo

-e $arq Exists Verdadeiro se $arq existir.

-f $arq File Verdadeiro se $arq for um arquivo regular.
-d $arq Directory Verdadeiro se $arq for um diretorio.

-r $arq Readable Verdadeiro se $arq puder ser lido.

-w $arq Writable Verdadeiro se $arq puder ser gravado.

-x $arq Executable Verdadeiro se $arq for executével.

-l $arq Link Verdadeiro se $arq for um link para outro arquivo.
-T $arq Text Verdadeiro se $arq for um arquivo texto.
-B $arq Binary Verdadeiro se $arq for um arquivo binario.

instrucdes if e elsif sdo executadas uma por vez, até que uma seja verdadeira ou até
gue a condicao else seja alcancada. Quando atendida uma condigéo, o bloco correspon-
dente é executado e os demais ignorados. As Figuras e mostram exemplos de
uso dessas instrucoes.

#!/usr/bin/perl

$nome = “fulano" ;

if ($nome It “ciclano") {

print "Alfabeticamente, _’$nome’ _vem_antes _de_’ciclano’.\n" ;
}
else {

print "Alfabeticamente, _/ciclano’ _vem_antes _de_’'$nome’\n"

Figura 4.35: Usando if e else .

unless

Talvez seja interessante nao fazer nada quando a condicéo if for verdadeira, somente
guando for falsa. O uso de um if vazio com um else , ou de uma negativa de if pode
tornar o codigo confuso, segundo [Wall, et al. (2000)]. Para resolver esse problema usa-se

Perl 107

#!/usr/bin/perl
$resposta = "s" ;

if ($resposta eq "s") {

print "Vocé _escolheu _'sim’.\n"
}
elsif ~ ($resposta eq "n") {

print "Vocé _escolheu _’'ndo’.\n" ;
}
else {

print "Vocé _ainda _estad _em duavida?\n"

Figura 4.36: Usando if , elsif eelse .

ainstrucdo unless (a menos que). E bom frisar que n&o existe a instrugéo “elsunless”. Na
Figura ha um exemplo de uso do unless

#!/usr/bin/perl

$cor = "vermelho" ;

unless ($cor eq "azul") {
print "$cor _ndo_¢é _a_cor _do_céu.\n" ;

Figura 4.37: Usando o unless

4.5.2 Estruturas de Repeticao

while

A estrutura while executa um bloco enquanto uma condicao for verdadeira. Quando
esta condicdo se tornar falsa e for verificada novamente, o bloco ndo sera mais executado.
Se antes de executar o bloco a condi¢do néo for verdadeira, o bloco nunca chegara a ser
executado. A Figural4.38 mostra um exemplo de uso da instrugdo while

until

A estrutura until € o contrario de while : executa um bloco enquanto uma condic&o
for falsa. Quando esta condic&o se tornar verdadeira e for verificada novamente, o bloco ndo
sera mais executado. Se antes de executar o bloco a condicédo for verdadeira, o bloco nunca
chegaré a ser executado. Um exemplo do uso do until pode ser visto na Figura [4.39]

108 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#!/usr/bin/perl

while ($i <=10) {

print "$i\n"
Sit++,
}
Figura 4.38: Usando o while
#!/usr/bin/perl
$i = 1

until ($i > 10) {
print "$i\n" ;
$i++;

Figura 4.39: Usando o until

for

A instrucdo for utiliza trés parametros: um estado inicial da variavel de loop, uma
condicdo e uma expressao para modificar a variavel de loop. Quando o for inicializa, o
estado inicial da variavel de loop é definido e a condicéo é verificada. Se for verdadeira,
o bloco é executado e a variavel de loop modificada. Novamente a variavel de loop é
verificada. Se for verdadeira, repete-se o processo. Se for falsa, encerra-se o loop. A
Figura[4.40| mostra um exemplo de uso do for .

#!/usr/bin/perl

@cor = ("azul" , "vermelho" , "verde" , "amarelo" , "laranja" , "rosa");

for ($i=0 ; S$i<=$#cor ; $i++) {

print ~ "$cor[$i] _\n" ;

Figura 4.40: Usando o for .

Perl 109

foreach

Semelhante ao for , o foreach permite que um bloco seja executado para cada um
dos valores do tipo scalar passados como parametro. Um valor do tipo array pode ser
passado como parametro, pois a instrucdo foreach ira trata-lo como uma lista de valores
do tipo scalar. A variavel de loop recebe cada elemento da lista individualmente, e o bloco
€ executado uma vez para cada elemento. Um exemplo do uso do foreach pode ser visto

na Figural4.41]

#!/usr/bin/perl
@cor = ("azul" , "vermelho" , "verde" , "amarelo" , "laranja" , "rosa");

foreach $var (@cor) {
print “"$var _\n"

Figura 4.41: Usando o foreach

Instrucdes de Desvio — next e last

As instrucdes next e last podem modificar o fluxo original do loop. A instrugéo
next permite pular para o final da iteracéo atual do loop e comecar a proxima iteragdo. A
instrucdo last permite pular para o final do bloco como se a condi¢cdo de teste do loop
tivesse retornado falsa. A Figura mostra um exemplo de uso das instrucdes next e
last e o seu resultado pode ser visto na Figura[4.43

#!/usr/bin/perl
@cor = ("azul" , "vermelho" , "verde" , "amarelo" , ‘laranja" , "rosa"),

foreach $var (@cor) {
if ($var eq “verde") {
next ; # retorna ao inicio e Ié a proxima cor.

if ($var eq ‘“laranja") {
last ; # sai do loop.
}
print ~ "$var _\n" ;
}

print "Fim! _\n"

Figura 4.42: Usando o next e last

110 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[prompt]$./exemplo.pl
azul

vermelho

amarelo

Fim!

Figura 4.43: Resultado da execugéo do script da Figura|4.42|

4.6 HANDLE DE ARQUIVOS

Um handle de arquivos é apenas um nome que pode ser dado a um arquivo, dispo-
sitivo, soquete, ou pipe para simplificar a entrada e saida de dados de um programa em
Perl. Primeiramente, € apresentado uma forma de ler dados do teclado e enviar resultados
para a tela. A Figura[4.44 mostra um exemplo simples de uso de <STDIN> e <STDOUT>O
handle <STDIN> é o canal de entrada de dados padréo do script, enquanto que <STDOUT>
€ o canal de saida de dados padrao do script. Em sistemas Unix-like, os processos herdam
entrada e saida do seu processo pai, que normalmente € um shell. No Linux, <STDIN> se
refere a entrada padréo que € o teclado e <STDOUT>se refere a saida padréo que é a tela
do monitor.

#!/usr/bin/perl

print STDOUT"Digite _o0,_seu_nome: _";
$nome = <STDIN>;
print STDOUT"Ol4 _$nome, como_vai? _\n"

[

Figura 4.44: Usando o <STDIN> e <STDOUT=>

[prompt]$./exemplo.pl
Digite 0 seu nome: Herlon
Ola Herlon

, como vai?

[prompt]$

Figura 4.45: Resultado da execugéo do script da Figura[4.44]

Pode-se criar outras entradas e saidas de dados para os scripts. Essa € a principal
finalidade dos handles. No exemplo da Figura[4.46|pode-se observar que o programa Ié da-
dos de um arquivo (meutexto.txt) e grava os resultados em outro arquivo (outro.txt).
Para se inicializar um handle, usa-se a funcao open() e para encerrar o Seu uso, usa-se a
fungdo close() . Na Tabela[4.8|pode-se visualizar algumas formas de se usar um handle.

Perl 111

#!/usr/bin/perl

open (ENTRADA, "meutexto.txt");
open (SAIDA, "> _outro.txt");

while ($linha = <ENTRADA>) {
print SAIDA "$linha"
}

close (SAIDA);
close (ENTRADA);

Figura 4.46: Lendo e gravando dados em arquivos.

Tabela 4.8: Definic&do de handles.

Handle Descricao

open(ARQ, ’'arquivo’) Lé do arquivo existente.

open(ARQ, < arquivo’) Lé do arquivo existente.

open(ARQ, > arquivo’) Cria o arquivo e grava nele.

open(ARQ, '» arquivo’) Acrescenta ao final do arquivo existente.
open(ARQ, ’| comando-pipe-saida’) Prepara um filtro de saida.

open(ARQ, 'comando-pipe-entrada |’) Prepara um filtro de entrada.

O operador “< >" vazio Ié linhas de todos os arquivos especificados na linha de co-
mandos, ou de <STDIN>, se nenhum arquivo for especificado. Quando o <STDOUT>do
sistema aponta para a tela, seu uso € redundante, pois a saida ja iria para a tela do monitor
de qualquer forma. N&o ha necessidade de escrever “<STDOUT?2 quando o script enviar
dados para a tela. No exemplo das Figuras e pode-se observar que foi recebido
do teclado um sinal de mudanca de linha. Isto acontece porque a operacao de leitura de
linha ndo remove automaticamente o caracter de nova linha “\n”. Mas isso néo é problema
j& que Perl possui a funcdo chomp() que remove o caracter de escape “\n”. Observa-se
na Figura[4.47)como ficou o exemplo da Figura[4.44agora reescrito com a fungdo chomp()
e o seu resultado é exibido na Figura4.48

112 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#!/usr/bin/perl

print ~STDOUT"Digite _o0,_seu_nome: _";
chomp($nome = <STDIN>);
print STDOUT"Ol4 _$nome, _como_vai? _\n"

[

Figura 4.47. Usando a funcdo chomp() .

[prompt]$./exemplo.pl
Digite o seu nome: Herlon
Ola Herlon, como vai?
[prompt]$

Figura 4.48: Resultado da execucéo do script da Figura(4.47|

4.7 SUB-ROTINAS

As sub-rotinas, também chamadas de func¢des, sdo importantes para o reaproveita-
mento de codigo e por facilitar a legibilidade dos programas. Uma sub-rotina é definida pela
declaracdo sub seguida do nome e do bloco de instru¢des. Esse bloco de instrugdes vem
entre chaves “{} ”. As sub-rotinas n&do precisam ser declaradas antes do ponto onde sdo
usadas. Para se executar uma sub-rotina coloca-se o marcador “&” antes de seu nome. Se
nao houver outra funcao ou variavel com o mesmo nome da sub-rotina, e se esta for decla-
rada antes de seu uso, este simbolo torna-se opcional. E uma boa préatica de programacio
manter o marcador “&” antes do nome da sub-rotina.

Toda sub-rotina retorna um valor, que pode ser do tipo scalar ou ndo. Dentro da sub-
rotina ndo é necessario indicar qual valor sera retornado, pois ela retorna o valor da ultima
expressao avaliada. Usando o comando return pode-se retornar outro valor diferente. A
Figura[4.49| mostra um exemplo do uso de sub-rotinas.

#!/usr/bin/perl

$x = 3;

Sy = 4

$z = &soma($x,$y); # ou $z = soma $x, $y

print "A_soma_de _$x_e_$y & $z. \n" ;

[

sub soma {
$_[0] + $_[1];

Figura 4.49: Exemplo de uso de sub-rotinas.

Perl 113

Em Perl, a definicdo dos parametros que sdo passados para a sub-rotina é diferente
das outras linguagens. Nao se explicita ou se declara as variaveis que recebem os paréa-
metros passados para a sub-rotina. Em vez disso, Perl usa o array “@ ", que contém uma
lista com os argumentos passados para a funcdo. E através desse array que as variaveis
internas da sub-rotina recebem os valores transferidos.

4.7.1 Escopo de Variaveis

Blocos de instru¢cdes podem existir soltos no programa, dentro de estruturas de con-
trole e também em sub-rotinas. Pode-se necessitar de variaveis que so fagam efeito dentro
desses blocos, as chamadas variaveis locais. Estas variaveis néo interferem nas instrucdes
fora do bloco a que pertencem. As variaveis locais podem ser criadas através do operador
my. Essas variaveis deixardo de existir quando o bloco tiver terminado de ser executado.

Relacionada com o operador my esta a diretiva “use strict ”. A diretiva forca o in-
terpretador Perl a aceitar apenas variaveis locais declaradas com o uso de my, ou seja, com
essa diretiva fica obrigatoria a declaragéo de variaveis através de my. Esse procedimento
evita alguns tipos de erros de sintaxe, e a diretiva pode estar no inicio de um arquivo ou de
um bloco de cédigo. O exemplo apresentado na Figura [4.50 mostra o uso do operador my
e da diretiva use strict e o resultado desse script pode ser visto na Figura[4.51]

#!/usr/bin/perl
use strict;
my $var = "global" ;

&imprime;
print "O_valor _de_\$var _fora _da_ _sub-rotina _é&: $var. _\n" ;

sub imprime {
my $var = "local"

print "O_valor _de_\$var _dentro _da_sub-rotina é: S$var. _\n" ;

[

Figura 4.50: Usando a diretiva use strict

[prompt]$./exemplo.pl
O valor de $var dentro da sub-rotina é: local.
O valor de $var fora da sub-rotina é: global.

Figura 4.51: Resultado da execugéo do script da Figura[4.50]

114 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

O array @ARGY¥ uma variavel especial. Ela contém os argumentos que foram passa-
dos pela linha de comando. A Figura mostra um exemplo de uso dessa variavel e o
resultado pode ser visto na Figura|4.53|

#!/usr/bin/perl
use strict;

my $origem = $ARGV[O];
my $destino = $ARGV[1];

print "Hoje _viajarei _de_$origem _até _$destino. \n"

[

Figura 4.52: Usando o array @ARGV

[prompt]$./exemplo.pl "Belo Horizonte" "S&o Paulo"
Hoje viajarei de Belo Horizonte até Sdo Paulo.

Figura 4.53: Resultado da execugéo do script da Figura|4.52|

4.8 REFERENCIAS

Uma referéncia aponta para outra variavel, ou seja, ela contém o endereco de outra
variavel. Normalmente € usada para passar parametros para uma funcédo. Por exemplo,
seja uma variavel do tipo array de 1 MB de tamanho. Se esta variavel for passada para uma
sub-rotina, ela sera copiada para a variavel @ . Se for passada uma referéncia da variavel e
ndo a variavel em si, economiza-se memdria e ganha-se velocidade. A Figura[4.54] mostra
um exemplo do emprego de referéncias. O sinal “\” (barra invertida) na frente da variavel
significa que esta se extraindo sua referéncia. Pode-se referenciar arrays, scalares, hashs,
handles e até mesmo funcoées.

A referéncia é um valor do tipo scalar ($) que pode, por exemplo, ser apontada para
um array (@. Observa-se no exemplo da Figura[4.54]o procedimento para chamar de volta o
valor apontado pela referéncia. Na frente do nome da referéncia ($nome) usa-se o simbolo
de acordo com a variavel referida. Por exemplo, um valor do tipo array seria chamado por
@%$nomeum hash por %$nomee um scalar por $$nome.

4.9 EXPRESSOES REGULARES

Expressdes Regulares, também conhecidas como Regexp, sdo utilizadas por muitos
programas de pesquisa e manipulacao de textos, como Sed, Awk, grep , etc. Sua principal

Perl 115

#!/usr/bin/perl

use strict;

my $a = "Estou _aqui!" ; # $a € uma variavel scalar.

my $b = \$a; # $b é uma referéncia para $a.
print "$$b _\n" ;

my @vet_a = ("arroz" , "feijjdo" , "macarrdo");

my $vet b = \@vet_a;

print "@$vet_ b _\n" ;

Figura 4.54: Usando referéncias.

finalidade é determinar se uma string combina com um padréo especifico ou ndo. Ela pode
descrever um conjunto de strings sem ter que listar todas as strings do conjunto. Ou seja,
ela tenta “casar” seu conteudo com um pedaco de texto. Expressdes regulares sdo um
pouco diferentes em cada implementacédo, de forma que em Perl elas se diferem de Bash,
Sed e Awk. Em [Jargas (2002)] e [Friedl (2002)] encontram-se boas fontes de informacdes
sobre Expressdes Regulares.

As expressoes regulares séo delimitadas por barras “// . Esta &€ uma forma abreviada
de se usar o operador m// . Se for necessario usar a barra “/ ” como caracter normal den-
tro da expresséo regular, ela devera estar precedida da barra invertida “\” para perder seu
significado especial de delimitador. No exemplo da Figura [4.55| procura-se pela substring
“casa” dentro das strings exemplo. S&o fornecidas trés strings de exemplo. Na primeira
string ndo havia a substring “casa”, portanto nada foi retornado. Na segunda string havia a
substring “casa”, portanto o operador // retornou a parte da string exemplo que se encai-
xava na regra definida. Na terceira string, foi retornada a palavra “casados” pois a substring
da regra se encaixou nesta palavra. O operador de associacdo de padrdes “="" esta di-
zendo ao interpretador Perl para procurar uma combinacdo da expressao regular “casa”
dentro das strings exemplo.

Se nas strings exemplo houvesse a palavra “Casa”, com “C” maiusculo, o operador
m// n&o retornaria essa ocorréncia. Este operador diferencia mailsculas de minusculas.
Se néo for de interesse esta diferenciagéo, pode-se usar o modificador “i ”, apos a segunda
barra, que faz com que mailsculas e minusculas deixem de ser diferenciadas.

Existe também o operador s/// que além de determinar se uma string combina com
um padréo definido, ele também faz substituicdes no texto em caso afirmativo. No exemplo
da Figura[4.56] o comando $texto = s/Windows/Linux/ substitui a palavra “Janelas”
por “Linux” na frase, na primeira ocorréncia. Se a frase possuir mais de uma ocorréncia,

116 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#!/usr/bin/perl

use strict;

my $textol = "A_moradia _em apartamentos _tem_sido _a_solu¢do _em grandes _cidades."
my $texto2 = "No_interior, _Ccasa _é_uma boa_opcao."

my $texto3 = "O_jogo _ser4d _entre _casados _e, _solteiros." ;

if ($textol =~ /casal) {
print “Encontado _em \$textol. \n"

if ($texto2 =~ /casal) {
print "Encontado _em \$texto2. \n" ;

if ($texto3 =~ /casa/) {
print "Encontado _em \$texto3. \n" ;

Figura 4.55: Exemplo de uso de expressdes regulares.

e se for desejavel a substituicdo de todas, é necessario adicionar o modificador “g” apos a
dltima barra.

#!/usr/bin/perl

use strict;

my $texto = "Estou _usando _Janelas, _porque _gosto _muito _de_Janelas." ;
$texto =~ s/Janelas/Linux/;

print "$texto _\n" ;

Figura 4.56: Exemplo de uso do s///

Expressdes regulares sao utilizadas, normalmente, para encontrar ocorréncias mais
complexas do que simples palavras. Por exemplo, encontrar um endereco ip no formato
“w.x.y.z " dentro de uma string. Para realizar essas procuras mais complexas ha uma
série de caracteres com significado especial que serdo usados numa expressao regular. A
Tabela da Secéo do Capitulo [3) mostra varios desses caracteres, que também tém
0 mesmo significado em Perl, com seus respectivos significados e exemplos.

Algumas classes de caracteres sdo muito comuns e bastante utilizadas. Para simplifi-
car, pode-se fazer uso de codigos especiais. A Tabela[4.9 mostra esses cddigos especiais

Perl 117

com seus respectivos significados. Pode-se usar também letras mailsculas para indicar
qualquer caracter exceto os que forem da prépria classe.

Tabela 4.9: Codigos especiais de classes de caracteres.

Codigo Descricao

\d Classe dos digitos, [0-9].
\w Classe de letras, digitos e underscore, [A-Za-z0-9].
\S Espaco em branco.

O " ” fora de colchetes ([]) indica que a regra devera ocorrer no inicio da linha. O “$”
indica que a regra devera ocorrer no final da string. O caracter de nova linha “\n” podera
aparecer em qualquer lugar no interior da string, que nao alterara o resultado.

Pode-se utilizar parénteses para indicar agrupamentos de elementos e, também, para
se lembrar de partes que ja foram combinadas. Um par de parénteses em torno de uma
parte de uma expressao regular faz com que aquilo que foi combinado por essa parte seja
lembrado para uso posterior. Isso ndo altera as regras da expressao regular. O modo como
se refere a parte lembrada depende de onde se quer fazer isso. Dentro da mesma expres-
sdo regular sdo usados os termos \1, \2, \3, ..., para o primeiro, segundo, terceiro, ...,
par de parénteses encontrados, respectivamente. Se a referéncia a parte lembrada for feita
fora da expresséo regular, usa-se os termos $1, $2, $3, ..., nolugar de \1, \2,\3,.... Um
exemplo pode ser visto na Figura [4.57]

#!/usr/bin/perl

$frase = "o _doce perguntou _pro _doce qual _era _o_doce mais doce que_o_doce de
batata-doce." ;

if ($frase =~ /~(0) (doce) perguntou pro \2 qual era \1 \2 mais \2 que \1 \2
de batata-\2./) {

print ~ "Primeiro _paréntese: _$1_\n" ;

print "Segundo _paréntese: _$2_\n" ;

Figura 4.57: Exemplo de referéncias posteriores.

Existem, também, as variaveis especiais $' , $& e $' , que representam, respectiva-
mente, 0 que vem antes, a parte encontrada e o que vem depois na string analisada.

118 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

4.10 EXEMPLO FINAL — UM ANALISADOR DE LOGS

Esta secdo encerra o conteudo de Perl implementando um exemplo mais completo,
abrangendo os conceitos vistos até aqui. Este exemplo € um caso real muito comum no
dia-a-dia de um administrador de sistemas. Sera desenvolvido um script para analise do
arquivo de log de um servidor Web. Esse exemplo € baseado em [Dias (2000)].

O formato padrdo do conteudo de um arquivo de log do servidor Web Apacheﬁ é
mostrado na Figura [4.58] O significado de cada campo é mostrado na Tabela [4.10, Na
Figura[4.59/ha um exemplo real de uma linha qualquer encontrada num arquivo de log.

[enderego ident user [data] "request” status bytes J

Figura 4.58: Formato padrdo de um arquivo de log do servidor Web.

Tabela 4.10: Significado dos campos no arquivo de log do servidor Web.

Campo Descricao
endereco Endereco IP da maquina do cliente.

ident Resposta do ident no cliente.
user Nome do usuario, caso tenha se autenticado.
data Data e hora do acesso.
request Requisicéo enviada pelo cliente.
status Status respondido pelo servidor.
bytes Quantidade de bytes transferido.
[200.141.51.23 - - [23/Jan/2005:16:14:32 +0000] "GET /index.htm HTTP/1.1" 200 686 J

Figura 4.59: Exemplo do contetdo de um arquivo de log do servidor Web.

Do arquivo de log, necessita-se obter as seguintes informacoes:

e as paginas mais acessadas;
e 0 endereco ip dos usudrios que mais acessam o servidor;
e a quantidade de bytes transferidos por pagina;

8Mais detalhes podem ser obtidos em http://httpd.apache.org/docs-project/

http://httpd.apache.org/docs-project/

Perl 119

e a quantidade de bytes transferidos por clientes;
e a quantidade total de bytes transferidos.

Nota-se que as informacdes desejadas se encontram nos campos endereco, request
e bytes. Nos interessa apenas as requisi¢coes aceitas. O servidor Web registra o valor “200”
no campo status quando a requisi¢gao foi aceita. As outras informacdes serao ignoradas.

A idéia principal do programa consiste em:

e ler todas as linhas do arquivo de log, uma a uma;

e verificar se essas linhas estdo no formato padréo do arquivo de log;
e extrair os campos endereco, request, status e bytes;

e trabalhar com as linhas que possuem status igual a 200 (aceito);

e contabilizar o numero de requisicdes de cada endereco ip;

e contabilizar o numero de requisicdes de cada pagina,

e contabilizar a quantidade de bytes solicitados por cada endereco ip;
e contabilizar a quantidade de bytes fornecidos por cada pagina;

e contabilizar o total de bytes transferidos pelo servidor;

e colocar em ordem decrescente as paginas mais acessadas;

e colocar em ordem decrescente os clientes que mais acessam o servidor;
e exibir resultados.

O script sera desenvolvido por etapas. A primeira é apresentada na Figura e
consiste em definir a localizagédo do interpretador Perl, as diretivas utilizadas e declarar as
variaveis.

usr/bin/perl -w

use strict;

declaracdo das variaveis

my ($ip, $full_request, $status, $bytes);
my ($request, $total, $nao_200, $erros);

my (%contagem_ip, %contagem_request, %bytes_ip, %bytes_request);

$erros = O;

Figura 4.60: Primeira etapa do exemplo “Analisador de logs”.

A segunda etapa consiste em ler linha por linha do arquivo de log e extrair as informa-
cdes necessérias. A Figura mostra mais detalhes. Geralmente o servidor Web gera

120 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

varios arquivos de log. Talvez seja mais interessante que 0s homes desses arquivos se-
jam passados na linha de comando, como parametros do programa, em vez de inseri-los
dentro do codigo. Isto permite uma maior flexibilidade. Para isso € utilizada a estrutura
while (<>) {...} que faz com que todos os arquivos passados na linha de comando
sejam abertos para leitura. A outra alternativa, um pouco mais trabalhosa, seria 0 uso do
comando open para a criagdo de um handle.

while (<>){ # loop para ler cada linha
if (/MOSH sHSH sHSH sH[LA)\ s+'()" \s+(\S+H)\ s+(\S+H)$/ A
$ip = $1;
$full_request = $2;
$status = $3;
$bytes = $4,

if ($3 == 200}
#Extrai a URL:

$full_request =~ NS+ S+H()\ sHSH/,
$request = $1,
if ($bytes eq """ X # Garante que o0 valor € numérico
$hytes = 0;
}
$contagem_ip{$ip}++; # Contagem de acessos por ip.
$contagem_request{$request}++; # Contagem de acessos por pagina.
$bytes_ip{$ip} += S$bytes; # Contagem de bytes transf. por ip.
$bytes_request{$request} += $bytes; # Contagem de bytes transf. por pag.
$total += $bytes; # Contagem do total de bytes transf.
}else {
$nao_200++; # Cont. pag. c/ status dif. de 200.
}
}else { # Contagem das linhas que ndo "casam"
$erros++; # com a Expressdo Regular.
}
} # Fim do loop while.

Figura 4.61: Segunda etapa do exemplo “Analisador de logs”.

Cada linha extraida é comparada com a expresséao regular chamada no exemplo de
“principal” para verificar se atende ao formato padrao do arquivo de log do servidor Web. As
linhas que ndo se casarem serdo contabilizadas como erro. Observa-se na Figura[4.61] que
essa expressao regular possui quatro pares de parénteses, que extraem, respectivamente,
0S campos endereco, request, status e bytes, que séo atribuidos as suas respectivas varia-
veis.

Nos interessa apenas as linhas com o campo status igual a 200 que significa que a
requisicdo foi aceita e enviada. As linhas que possuirem o campo status diferente de 200
serdo contabilizadas como “requisi¢des ndo aceitas”.

Perl 121

O campo request traz, além da URL solicitada, o método de envio e o protocolo uti-
lizado. E necessario extrair desse campo apenas a URL. Para isso, utiliza-se uma outra
expressao regular, chamada no exemplo de “secundaria”. A URL extraida é armazenada
em outra variavel.

O servidor web coloca um simbolo “- ” no campo bytes caso o cliente aborte a requisi-
cdo. Se for encontrada esta situacao, a quantidade de bytes transmitida, nesse caso, sera
considerada igual a zero.

De posse de todas as informacdes necessarias, pode-se fazer a contagem das pagi-
nas acessadas, da quantidade de bytes transferida e dos clientes que acessaram o servidor.
Essas contagens serdo feitas com variaveis do tipo hash, onde as chaves serdo ou a URL
da pagina solicitada ou o ip do cliente, e os valores correspondentes a essas chaves serao
a contagem propriamente dita.

A terceira e Ultima etapa € a ordenacao e exibicdo dos resultados. Foi construida uma
sub-rotina para executar esta tarefa. A Figura mostra mais detalhes. Os dados sao
passados para a sub-rotina através de referéncias, ordenados numericamente e exibidos 0s
dez maiores valores. A funcédo sort() sO ordena em ordem lexicografica e ndo pode ser
usada diretamente para ordenar nimeros. E preciso entender como a funcéo sort() tra-
balha: ela compara dois valores e retorna, internamente para seu proprio algoritmo, -1 se
o primeiro for menor, O se for igual, e 1 se for maior. Pode-se construir um bloco de instru-
cOes para a funcao sort() ﬂ onde através do operador <=> pode-se comparar numeros de
forma “numérica”, podendo retornar os valores -1 , 0 e 1 para o algoritmo interno da funcao
sort() . As variaveis $a e $b séo variaveis padroes temporériasﬂ utilizadas pela funcao
sort() . Afuncédoreverse() foi usada para colocar a ordenagdo em ordem decrescente,
uma vez que sort() ordena em ordem crescente. Feita essa ordenac¢ao, pega-se 0s dez
primeiros valores ([0..9]) para serem exibidos.

O cadigo completo deste exemplo pode ser obtido unindo-se os codigos das Figu-

ras (4.60, 4.61]e |4.62, A Figura mostra o resultado de sua execucao.

"H& mais informacdes sobre a construcdo de blocos para a funcéio sort() nas paginas de manual (man
perl) ou em http://perldoc.perldrunks.org/functions/sort.html
8E uma boa pratica n&o usar variaveis definidas pelo usuario com nomes $a e $b.

http://perldoc.perldrunks.org/functions/sort.html

122 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

#As 10 paginas (arquivos) mais acessadas
print "Paginas _mais _acessadas:\n\n#\tacessos\tbytes\tPaginas\n”
ordena_e_mostra(\%contagem_request, \%bytes_request);

#0s 10 clientes (usuarios) que mais acessam
print "\nClientes _que _mais _acessam:\n\n#\tacessos\tbytes\tCliente\n" ;
ordena_e_mostra(\%contagem_ip, \%bytes_ip);

#Resultados finais

print "Erros: __$erros\n" ;

print "Requisi¢bes _ndo_aceitas: _$nao_200\n" ;
print “"Total _bytes: _ _$total\n"

#Funcdo que ordena e mostra os dados
sub ordena_e_mostra{

my ($ref_a, $ref_b) = @_;

my $count = O;

foreach my S$item ((reverse sort {$%ref_a {$a} <=> $$ref_a {$b}} keys \
%$ref_a) [0..9]){

$count++; # adiciona 1 ao $count

print "$count\t" ; # Mostra os dados

print "$$ref_a{$item\t" ; # Item principal

print "$$ref_b{$item}\t" ; # Item secundério

print "$item\n" # Nome do item
}

Figura 4.62: Terceira etapa do exemplo “Analisador de logs”.

Perl

123

r

12

© 00 N O O b WN PP H

P P NDNNMNDNWWSN

=
o

72
15

© 0N O WDN PP H
[EEY
N

=
o

Erros: O

[prompt]$./analisador.pl access.log
Paginas mais acessadas:

acessos bytes Péaginas

6480 /cgi-bin/monitux/sobre.cgi
2534 /cgi-bin/monitux/home.cgi
16581 /cgi-bin/wxis.exe?lsisScript=phl7/003.xis&cipar=phl...

1917 /cgi-bin/monitux/usuarios.cgi

2280 /cgi-bin/monitux/servicos.cgi

1850 /cgi-bin/monitux/configuracao.cgi

2384 /cgi-bin/wxis.exe?lsisScript=phl7/004.xis&cipar=phl...
288 [cgi-bin/monitux/frame_off.cgi

1654 /cgi-bin/monitux/screens.cgi

522 /phl7/ingles.jpg

Clientes que mais acessam:

acessos bytes Cliente

401860 127.0.0.1
27639 192.168.254.3
33290 192.168.254.21
18398 192.168.254.15
12897 192.168.254.8
21654 192.168.254.2
31065 192.168.254.11
17541 192.168.254.6

5419 192.168.254.4
6431 192.168.254.5

Requisicdes ndo aceitas: 5
Total bytes: 701660
-

Figura 4.63: Resultado da execuc¢éo do exemplo “Analisador de logs”.

124 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

5

FERRAMENTAS DE DESENVOLVIMENTO

5.1 INTRODUCAO

Compilar um programa num sistema diferente do qual ele foi desenvolvido pode ser
uma tarefa complexa. Existe uma grande quantidade de variaveis que precisam ser analisa-
das e que afetam a maneira como o0 programa precisa ser compilado. 1sso é especialmente
importante em sistemas como o Linux, onde dificilmente existiram dois computadores con-
figurados exatamente da mesma forma.

As pessoas que desenvolvem programas para sistemas da familia Unix foram criando
ferramentas ao longo dos anos para simplificar o processo de compilagdo de um programa,
levando em consideracao coisas como:

e a existéncia ou ndo de determinada biblioteca de fungdes instalada para uma uma
determinada linguagem;

a versao dessas bibliotecas;

0 sistema de arquivos utilizado;

as configuracfes de seguranca no sistema de arquivo;
a organizacao da arvore de diretorios de um determinado computador.

O desenvolvimento dessas ferramentas acabou sendo absorvido pelo projeto GNU,
0 que levou ao desenvolvimento de ferramentas como autoconf, automake, autoheader e
libtool (doravante chamadas de autotools) que buscam simplificar o processo de compila-
cao de um programa, facilitando assim o desenvolvimento de programas portaveis. Essas
ferramentas possuem a seguinte funcionalidade:

Autoconf : realiza testes no sistema onde é executado, procurando caracteristicas que afe-
tem a forma como um determinador programa precisa ser compilado. Ele proporciona
maneiras de adaptar o codigo fonte ao sistema onde ele sera compilado, através de
scripts (usando bash, por exemplo).

Automake : cria arquivos makefile que séo regras para controlar a execugéo do compilador,
simplficando a interacdo entre o programador e o compilador.

126 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Autoheader : cria arquivos de cabecalho (arquivos .h) que s&o usados como forma de
adaptar o codigo fonte de um programa as caracteristicas de uma plataforma. Arqui-
vos .h sdo exclusivos das linguagens de programacéo C e C++, porém essas lingua-
gens sao usadas no desenvolvimento da quase totalidade dos programas compilaveis
em sitemas da familia Unix.

Libtool : oferece uma interface entre programador e compilador/ligador, com a finalidade
de simplificar as questdes de ligacdo (tanto estatica quanto dindmica) do programa
executavel.

Essas ferramentas evitam que o desenvolvedor de um programa precise conhecer de-
talhes das diversas plataformas onde o programa podera ser compilado. Elas acrescentam
um passo a mais no processo de transformacéo de cddigo fonte em codigo executavel: a
configuracao.

5.2 O PROGRAMA MAKE

Um primeiro passo para entender o funcionamente de ferramentas de desenvolvi-
mento é entender o programa make e o formato de seus arquivos de controle, chamados
makefile.

O nome make vem do inglés, e quando verbo significa “fazer”, “construir”, “criar”.
Quem nao gostaria de, apds desenvolver o codigo de um determinado programa, simples-
mente dizer para o computador “crie 0 programa x"? A idéia do programa make € justa-
mente essa: alguém chegaria para o computador e diria “make editor”, e automaticamente,
0 programa editor seria criado.

Para que alguém possa ter essa facilidade toda, outra pessoa precisa cuidar de todo
o trabalho. O usuario de um programa (distribuido na forma de cédigo fonte) ndo deveria
precisar saber quais programas usar na compilagdo, quais op¢des passar para esses pro-
gramas, etc. Este trabalho deveria ficar todo nas méaos de quem desenvolve o programa e
portanto cabe aos desenvolvedores entender o formato makefile, e criar um arquivo no qual
serdo colocadas as informacgfes necessarias para que o programa make faca a compilacao.

O proprio desenvolvedor também ganha com o uso do make. Durante a evolugéo
do ciclo de desenvolvimento de um programa, certamente seréo realizadas varias compi-
lacdes. Se o desenvolvedor “ensina” o computador sobre como o programa dele deve ser
compilado, vai gastar mais tempo uma vez, para poupar tempo varias vezes depois.

Na verdade, o make ndo serve somente para compilar programas, ele é usado em
qualquer situacdo onde é necessario transformar arquivos num formato mais voltado para
o tratamento por humanos em arquivos num formato mais voltado para o tratamento por
magquinas. Exemplos de uso do make incluem transformacgé&o de arquivos texto em bases de

Ferramentas de Desenvolvimento 127

dados e transformacéo de descricdes de documentos (como cédigo IKTEX) em documentos
propriamente ditos (como arquivos PDF).

Um arquivo makefile € um conjunto de regras que dizem ao make como transformar
alguns arquivos em outros. Por exemplo: suponha que um programa esta divido em quatro
arquivos: arql.c , arg2.c , arql.h e arg2.h . Suponha ainda que para transforma-los
num arquivo executavel editor , é necessario compilar argl.c e arql.h em argl.o ,
compilar arg2.c , arql.h e arg2.h em arg2.0 e finalmente ligar o cédigo objeto de
arql.o e arg2.0 criando o codigo executavel do arquivo editor . Podemos identificar
aqui trés regras a serem descritas no arquivo makefile:

1. como criar arql.0o a partirde argl.c e arql.h ;
2. como criar arq2.0 a partir de arqg2.c , arql.h earg2.h ;

3. como criar editor a partir de arql.0 e arq2.0

Descritas essas regras, quando o make for acionado para criar editor , ele vai notar
que precisa do arql.o e arg2.0 . Sabendo disso, ele procura a regra que indica como
arql.o é criado, notando que para isso precisa de arql.c e argl.h

N&ao existem regras dizendo como criar argl.c e arql.h , portanto eles precisam
existir antes da execucao do mak. Caso néo existam, o make aborta sua execucao infor-
mando que houve erro. Caso existam, ele tenta verificar se argl.c ou argl.h sao mais
recentes do que arql.o . Se algum deles for, siginifica que arql.o precisa ser refeito
de acordo com as instru¢des contidas no arquivo makefile. Por outro lado, se arql.o for
mais recente que os dois arquivos necessarios para cria-lo, ndo ha porque perder tempo
refazendo-o. Essa mesma verificagdo é feita com arg2.0 e finalmente feita com editor

alvo prerequisito ...
comando

Figura 5.1: Formato geral de uma regra num arquivo makefile

Uma regra tem o formato geral mostrado na Figura 5.1l Ela comeca com uma linha
que contém a descricdo de um ou mais alvos (separados por espacos). Geralmente cada
regra tem um unico alvo, que € o0 nome de um arquivo que 0 make deve ser capaz de
criar. Nessa mesma linha, separados dos alvos pelo caracter dois pontos ("), vém os preé-
requisitos. Eles sdo geralmente nomes de arquivos que Sa0 necessarios para se criar 0s
alvos indicados, quando isso for necessario.

INa verdade, existem varias regras implicitas que normalmente s&o usadas sem que estejam descritas no
arquivo makefile. Para maiores informacg@es sobre regras implicitas, consulte a documentacéo do make.

128 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Comandos séo definicbes de como se usar 0s pré-requisitos para se gerar 0s alvos.
Eles devem aparecem em linhas iniciadas por um caracter de tabulacdo (representados por
setas na figura e sao escritos da mesma forma que seriam escritos num interpretador de
linha de comando.

Cada regra serve para dizer como determinar se um alvo precisa ser refeito e para
indicar qual procedimento deve ser usado. Um alvo sera refeito se ele ndo existir e for
necessario para criar o alvo que o usuario pediu, ou entdo se algum de seus pré-requisitos
for mais recente que ele.

editor: arql.o argq2.0
gcc -0 editor arql.o arg2.0

arql.o: argl.c argl.h
gcc -c argl.c

arg2.0: arg2.c arql.h arg2.h
gcc -c arg2.c

Figura 5.2: Exemplo de arquivo no formato makefile

A Figura[5.2] apresenta um arquivo no formato makefile que contém as regras sobre a
criacdo do arquivo editor , comentado anteriormente. Os comandos sdo simplesmente a
chamada do compilador com seus devidos parametros para gerar 0os arquivos desejados.

Um arquivo no formato makefile pode conter outras coisas além de regras. Isto sera
abordado a seguir. Ele deve ser salvo preferencialmente no diretério onde estao 0s arquivos
envolvidos em sua descricao, facilitando a digitacdo dos nomes. Seu proprio nome nao pre-
cisa seguir nenhuma regra e deve ser passado para o make via opcéo ‘-f ’, como em make
-f meuarquivo editor , onde o0 make é instruido a criar editor , usando o arquivo de
regras meuarquivo . Quando nédo se usa a opc¢ao ‘-f ’, 0 make procura por alguns arqui-
vos padrdo. A versdo GNU do make (geralmente a verséo disponivel nos sitemas Linux),
procura por arquivos chamados GNUmakefile , makefile e Makefile , nessa ordem. O
nome mais comum é Makefile pois a inicial maiuscula faz com que o arquivo apareca no
inicio da listagem de um diret6rio na maioria dos sistemas. Criado o arquivo Makefile ,
conforme a Figura [5.2, podemos criar o arquivo editor com o comando make editor
conforme a Figura[5.3]

Suponha que durante a execucao de editor , foi identificada uma falha no programa.
Essa falha foi corrigida através de uma alteragdo no arquivo arg2.h . Ao recompilar o
programa, o make detecta que precisa ser gerado um novo arg2.0 e consequentemente

2Muitas pessoas aprendendo a usar o make cometem o erro de deixar espacos antes dos comandos, até
mesmo porque muitos editores de cAdigo fonte substituem automaticamente tabulacfes por espacos. Nesse
caso, o make vai acusar erro de sintaxe.

Ferramentas de Desenvolvimento 129

[prompt]$ make editor

gcc -c argl.c

gcc -c arg2.c

gcc -0 editor argl.o arg2.0

[prompt]$ Is

arql.c argl.h argl.o arg2.c arq2.h arq2.0 editor Makefile
[prompt]$./editor

Figura 5.3: Exemplo de uso do make

um novo editor , mas nao recompila arql.c paragerar um novo argl.o , conforme pode
ser visto na Figura[5.4] Isso pode significar uma boa economia de tempo, dependendo do
tamanho dos programas envolvidos.

[prompt]$ make editor

gcc -c arg2.c

gcc -0 editor argl.o arg2.0
[prompt]$

Figura 5.4: Somente os arquivos afetados pela alteracéo de outro séo refeitos

Quando se omite qual o alvo deve ser usado, 0 make usa o primeiro alvo que existe
no arquivo. Costuma-se entdo, deixar o alvo que faz tudo que € necessério para criacéo do
programa na primeira posi¢ao, e os alvos intermediérios depois. Existem nomes tradicionais
para alvos que, se usados, exigirdo que se escreva menos documentacdo a respeito de
como compilar o programa. Os alvos tracionais mais comuns sdo (mais ou menos em
ordem de popularidade):

1. all compila tudo o que for possivel, possivelmente incluindo programas auxiliares
usados na depuracao do programa principal - costuma ser o primeiro alvo;

2. clean apaga todos os arquivos gerados durante a compilagcdo dos programas,
deixando apenas o cédigo fonte;

3. install copia executaveis, arquivos de dados e documentacao para diretérios
globais como /ustr/local/bin , lusr/share | etc., alterando permissdes con-
forme necessario para que o programa passe a estar disponivel para todos o0s
usuarios do computador - para fazer isso, é preciso ter privilégios de administra-
dor;

4. uninstall apaga todos os arquivos instalados pelo alvo install - também pre-
cisa de privilégios de administrador.

Além de regras, arquivos makefile usam variaveis para guardar texto (geralmente no-
mes de arquivos ou opgdes a serem passadas para um programa). Isso pode facilitar a

130 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

manutencgéo e a portabilidade do arquivo makefile. Por exemplo: na Figura[5.2] foi usado o
compilador gcc , mas em alguns computadores, o compilador C usado nao é o da GNU e se
chama cc. Para compilar o editor numa méaquina assim, seria necessario trocar o nome do
compilador nos trés lugares em que ele aparece (e poderiam ser 30 lugares). Para facilitar
isso, € interessante guardar o nome do compilador numa variavel e usar seu valor para se
referir ao compilador, conforme mostrado na Figura[5.5] Se o nome do compilador precisar
ser alterado, uma Unica mudanca sera suficiente.

Altere aqui para indicar o nome do seu compilador C
compilador = gcc

Regras
editor: arql.o argq2.0

$(compilador) -o editor arql.o arq2.0

arql.o: argl.c argl.h
$(compilador) -c argl.c

arg2.0: arg2.c arql.h arg2.h
$(compilador) -c arg2.c

all: editor

clean:
rm -f editor *.0

Figura 5.5: Uso de variaveis e comentarios num arquivo makefile

Existem muitas variaveis pré-definidas que podem e geralmente sao usadas num ar-
quivo makefile. As variaveis pré-definidas mais usadas sé:

e CC programa usado para compilar arquivos escritos em linguagem C - seu valor
padréo é cc;

e CXX programa usado para compilar arquivos escritos em linguagem C++ - seu valor
padrdo é g++;

e CPP programa usado para fazer pré-processamente em arquivos C - seu valor
padrdo é $(CC) -E ;

e PC programa usado para compilar arquivos escritos em linguagem Pascal - seu
valor padréo € pc;

e RM programa usado para apagar arquivos - seu valor padrdo é rm -f .

3Em computadores com Linux e o gcc instalado, cc € um ponteiro para gcc
4Variaveis vélidas para o make da GNU, ndo necessariamente pré-definidas em outras implementacgdes.

Ferramentas de Desenvolvimento 131

Algumas variaveis contém nomes estranhos de um unico caracter. Nestes casos, ndo
€ necessario colocar os parénteses em volta do nome da variavel (ap6s do sinal de délar)
para se obter o seu valor. Elas sdo usadas na parte dos comandos de uma regra para
indicar valores uteis:

e @ nome do alvo sendo seguido - Gtil para regras baseadas em alvos multiplos como
aquelas baseadas em padroes;

<: nome do primeiro pré-requisito - (til para regras baseadas em padrdes;

?: nomes de todos os pré-requisitos (separados por espacos) que S80 mais novos
gue o alvo;

" : nomes de todos 0s pré-requisitos;

* . parte variavel de um padrdo usado como alvo.

Os nomes dessas variaveis, seguidos de 'D’ ou 'F’ indicam respectivamente o nome
do diretdrio e do arquivo (sem a parte do diretorio) dos valores apresentados anteriormente.
Existem também variaveis pré-definidas cujo valor padréo € string vazia, usados para pas-
sar parametros para os programas mais usados:

e CFLAGS parametros do compilador C;

o CXXFLAGSparametros do compilador C++;

e LIBS: bibliotecas a serem usadas na etapa de ligacdo (parametros -I' e -L' do
linker;

e LDFLAGS parametros extras a serem usados pelo compilacdo na etapa de ligacao
de cddigo objeto (como ’-s’ para retirar simbolos do codigo executavel).

Vocé ja deve estar pensando que € possivel automatizar grande parte da criacao de
arquivos makefile. Nao seria muito dificil fazer um programa que abre os varios arquivos
com codigo fonte de um programa, procura instrucdes como #include “lista.h” e cria
um arquivo makefile baseado no préprio cédigo fonte. As ferramentas autotools podem
automatizar esse processo e num nivel bem maior do que simplesmente consultar qual
arquivo inclui qual®

5.3 AUTOTOOLS

A grande maiorias dos usuarios de Linux e sistemas operacionais semelhantes ja ins-
talou (ou tentou instalar) um programa distribuido na forma de cédigo fonte copiado da In-
ternet. Na maioria da vezes, a documentacéo do programa diz para executar um script cha-
mado configure , depois executar o programa make e depois executar make install

51sso n&o é necessariamente uma vantagem, ja que algumas vezes seria desejavel algo mais simples.

132 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

O configure é um script Bash que realiza diversos testes no sistema, procurando
programas, bibliotecas e outras coisas necessarias a compilacdo do programa que se quer
instalar. Na pior das hipoteses o configure avisa sobre problemas que deverédo aparecer
durante a compilacéo antes de se tentar compilar o programa, afinal a compilacéo é um pro-
cesso que pode tomar um bom tempo, e nem sempre as mensagens de erro do compilador
sdo apropriadas para quem quer apenas instalar o programa. Na melhor da hipoteses, o
configure detecta problemas e os corrige automaticamente, adaptando o processo de
compilacdo a maquina sendo utilizada. Ele cria o arquivo makefile baseado no resultado
dos testes, além de permitir que o usuario compilando o programa personalize diversas coi-
sas, como o diretorio onde o programa deverd ser instalado ou quais op¢des do programa
serao ativadas.

Arquivos como o script configure sé@o longos e dificieis de serem criados manual-
mente. O programa autoconf serve justamente para criar tal script, utilizando-se dos pro-
gramas mde aclocal . O programa m4é um “processador de macros”, ou seja, ele trans-
forma arquivos texto que usam mnemonicos como FUNC(parametrol, parametro2,

o) em arquivos texto com uma sintaxe mais sofisticada como template <class
parametrol> parametrol cINohLista<parametrol>::Funcao(parametro2,...)

O m4é muito usado para facilitar a escrita de arquivos de configuracdo, como o do servidor
sendmail , por exemplo. O programa aclocal sera apresentado posteriormente.

Antes de criar um arquivo configure , é preciso descrever num arquivo denominado
configure.in guais testes sdo necessarios para garantir que seu programa pode ser
compilado sem nenhum problema. Essa descrigéo é feita atraveés de uma série de “macros”
gue o processador m4 transforma em comandos no arquivo configure . Como o script
configure vai gerar um arquivo Makefile , é preciso também descrever as dependéncias
de compilacdo e outras coisas que sao importantes para a criagcao do Makefile

Aprender a usar o autoconf envolve dois itens fundamentais: conhecer as dezenas de
macros que descrevem testesﬁ e saber 0 que precisa ser testado para resolver problemas
de portabilidade num programa especifico. Esse segundo item &, sem sombra de davida,
a parte mais dificil de se usar o autoconf. Para 0s objetivos deste texto vamos supor que
qualquer novo projeto sera desenvolvido em C++ (e ndo em C), usando uma distribuicéo
Linux (e ndo outras variagdes de Unix) baseada em pacotes de software (como RPM) onde
a preocupacao quase sempre € saber se 0s pacotes necessarios a compilagéo estéo insta-
lados.

A maior parte da documentacdo dos autotools € voltada para davidas como “posso
usar a funcéo time de C para saber a hora corrente?” ou “sera que € possivel converter
strings em numeros usando atol ?”, de forma que duvidas mais avancadas (e mais inco-

Spara isto, a melhor coisa a fazer é ler a documentacéo do autoconf. O comando info autoconf sera
suficiente na maioria dos casos.

Ferramentas de Desenvolvimento 133

muns) como estas podem ser mais facilmente resolvidas com uma simples busca na Inter-
net (em especial, recomenda-se a leitura de [Bergo (2001)]). Para uma referéncia mais com-
pleta sobre as ferramentas autotools, recomenda-se a leitura de [Vaughan, et al. (2001)].

AC_INIT (main.cpp)

dnl Qual €' o compilador C++?
AC_PROG_CXX
AC_LANG_CPLUSPLUS

AC_PROG_MAKE_SET

dnl AC_HEADER_STDC
dnl AC_CHECK_FUNC(atol,, AC_MSG_ERR@8ops! no atol ?!?))

AC_CHECK_LIBncurses,main,, AC_MSG_ERRQ@Rstale a biblioteca ’'ncurses’))

VERSION="0.0.1"
AC_SUBSTVERSION)

dnl ler Makefile.in e escrever Makefile
AC_OUTPU[Makefile)

Figura 5.6: Arquivo configure.in para checar a existéncia da biblioteca ncurses

Na Figura[5.6 pode-se notar uma série de macros em destaque, a finalidade de cada
uma delas é:

e AC_INIT : serve para inicializacdo de checagem de erros no autoconf; deve ser a
primeira macro no arquivo e deve receber o nome de um arquivo no diretério onde
esta o codigo fonte do programa (costuma-se usar o arquivo principal);

e dnl : indica comentario (em qualquer arquivo processado pelo m4), vale até o final
da linha;

e AC_PROG_CXXrocura qual o compilador de C++ e verifica nele a existéncia de
determinadas caracteristicas como, por exemplo, se o compilador é capaz de gerar
codigo com simbolos para depuracao;

e AC_LANG_CPLUSPLU®dica que o programa usa a linguagem C++;

e AC_PROG_MAKE_SEerifica se o0 make tem a variavel MAKE pré-definida; isso é
importante porque muitas vezes os comandos de uma regra chamam o make para
realizar tarefas dentro de sub-diretérios;

e AC_CHECK_LIB verifica se é possivel compilar o programa usando determinada
biblioteca - recebe o nome de uma fungéo da biblioteca para usar como teste (main
€ usado quando ndo se deseja testar uma fungdo em particular);

134 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

e AC_SUBSTindica que o valor de uma determinada variavel deve ser passado adi-
ante na criacédo do arquivo Makefile ;

e AC_OUTPUTdetermina a execucdo do autoconf, gerando 0s arquivos necessarios
- deve ser a Ultima macro no final do arquivo.

A variavel VERSIONfoi usada aqui com a finalidade de mostrar como o valor de uma
variavel pode ser passado do configure.in até chegar no codigo fonte, alterando o com-
portamento do programa. N&o ha aqui a intencdo de propor uma forma de controle de
versdes de programa usando esse sistema.

O objetivo principal do exemplo do arquivo mostrado na Figura [5.6] € criar um script
configure que verifica se é possivel compilar um programa com a biblioteca ncurses (sem
preocupacdes com a versdo da biblioteca), além de aproveitar para associar valores véalidos
as variaveis tradicionais (ver pagina[130) a serem usadas no Makefile

CXX = @CXX@

VERSAO = @VERSION@
CXXFLAGS = @CXXFLAGS@
LIBS = @LIBS@

LDFLAGS = @LDFLAGS@

alocurses: main.o
$(CXX) $(LIBS) $(LDFLAGS) $< -0 $@

main.o: main.cpp
$(CXX) $(CXXFLAGS) -DVERSAO=\"$(VERSAO\" _-c _$<

clean:
coecooooB(RM) _alocurses | core _*.0

distclean:

$(RM) _alocurses _config.* _*.o _Makefile

[T TR

all: _alocurses

Figura 5.7: Modelo usado na criacdo do Makefile pelo script configure

Além do arquivo configure.in , € necessario ter um modelo de makefile para a cri-
acdo do Makefile durante a execucao do configure , esse arquivo € o Makefile.in
Um exemplo pode ser visto na Figura para um programa que usa a biblioteca “ncur-
ses”. Ele comeca passando valores para variaveis que serdo usadas no Makefile como
em CXX = @CXX@nhde a variavel CXXa ser usada no Makefile recebe o valor obtido
(automaticamente em AC_PROG_CXpelo configure

O resto do Makefile.in € examente como um arquivo makefile. Note como o valor
de VERSIONdescrito em configure.in é passado para VERSAGm Makefile , que por

Ferramentas de Desenvolvimento 135

sua vez, passa o valor para o codigo fonte através da op¢éo -D do compilador, criando o
simbolo VERSAQle forma equivalente a declaragcéo de #define VERSAO "0.0.1" dire-
tamente no cadigo fonte.

Tendo esses dois arquivos, basta executar autoconf no diretério em questdo para
que seja criado o script configure . Executando o configure numa maquina onde “ncur-
ses” e “ncurses-devel” ndo estejam ambas instaladas, deve-se ver algo semelhante a Figura
5.8

([prompt]$ Jconfigure

creating cache ./config.cache

checking for c++... c++

checking whether the C++ compiler (c++) works... yes
checking whether the C++ compiler (c++) is a cross-compiler... no
checking whether we are using GNU C++... yes
checking whether c++ accepts -g... yes

checking whether make sets ${MAKE}... yes

checking for main in -Incurses... no

configure: error: instale a biblioteca 'ncurses’!

[prompt]$

Figura 5.8: Exemplo de verificagdo executada pelo configure

Caso as bibliotecas estejam instaladas, o Makefile sera criado e o resultado da
execucdo do make serd aquele mostrado na Figura[5.9] No caso o compilador usado foi
c++ ao invés de g++, que é normalmente o preferido, mas usado pelo autoconf somente
guando néo é possivel usar o primeiro.

[prompt]$ make

c++ -g -02 -DVERSAO=\"0.0.1\" -c main.cpp
c++ -Incurses main.o -o alocurses
[prompt]$

Figura 5.9: Compilacdo do programa que usa a biblioteca “ncurses”

A forma como a string que identifica a versdo do programa foi passada para o pro-
grama funciona, mas é pouco pratica quando se quer passar uns 40 valores. Uma forma
mais pratica de se fazer isso seria criar um arquivo de cabecalho (arquivo com extensao
".h’) e se colocar esses valores no arquivo. O programa autoheader faz exatamente isso.

Para isso, vamos colocar no configure.in a macro AC_CONFIG_HEADERue faz
com que os valores coletados pelo configure sejam colocados num arquivo (usalmente
chamado config.h). Colocando AC_CONFIG_HEADER(config.h) logo apés AC INIT ,
e executando autoheader , sera criado um arquivo config.h.in como apresentado na

136 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Figura[5.10] Ele contém simbolos que permitem saber se existe ou ndo determinada biblio-
teca, funcdo, programa, etc. Esses simbolos, por sua vez, podem ser usados para alterar a
forma como o programa é compilado, através do uso de #ifdef s ou #if s. Logicamente,
o cbdigo fonte precisa incluir o codigo do config.h para ter acesso aos resultados dos
testes.

[* config.h.in. Generated automatically from configure.in by autoheader. */

[* Define if you have the ncurses library (-Incurses). */
#undef HAVE_LIBNCURSES

Figura 5.10: Arquivo gerado pelo autoheader

Depois de executado o configure , serd criado um arquivo config.h , conforme
mostrado na Figura[5.11] Neste caso ha somente um simbolo, ja que foi descrito apenas um
teste no configure.in . Se fosse usado um teste como AC_CHECK_FUNCS(atol atoi
strtod) , que verifica se € possivel usar as funcdes atol , atoi e strtod , haveriam trés
outros simbolos com os resultados do teste.

[* config.h. Generated automatically by configure. */
[* config.h.in. Generated automatically from configure.in by autoheader. */

[* Define if you have the ncurses library (-Incurses). */
#define HAVE_LIBNCURSES 1

Figura 5.11: Arquivo config.h gerado pelo configure

Ao invés de criar um arquivo Makefile.in diretamente, como mostrado anterior-
mente, costuma-se deixar esta tarefa para o programa automake . Para iSso é necessario
criar um arquivo Makefile.am que sera usado para criar o Makefile.in . A criagéo
do Makefile.am é muito parecida com a criacdo do arquivo configure.in , onde sdo
usadas macros com o objetivo de reduzir a quantidade de texto que o programador deve
escrever. Novamente, recomenda-se a leitura da documentagcédo do automake para saber
guais macros existem. O automake cria arquivos Makefile um pouco mais sofisticados,
criando automaticamente alvos como install ~ , uninstall |, dist , distclean , etc. que,
de outra forma, precisariam ser criados manualmente. Por outro lado, para programas sim-
ples, o Makefile criado ird parecer sofisticado demais, com uma grande quantidade de
variaveis, testes e alvos que acabam dificultando sua leitura.

Antes de criar um Makefile.am que sera usado para criar um Makefile.in equi-

valente ao antigo (Figura [5.7), deve-se modificar o configure.in , colocando nele ins-
trugOes para criacdo do novo Makefile.in . O arquivo Makefile.am pode ser visto na

Figura|5.12 As alteragdes séo:

Ferramentas de Desenvolvimento 137

e ainicializagcdo do automake, com a macro AM_INIT_AUTOMAKE, logo ap6s a ma-
cro AC_INIT , passando o nome do programa (que sera usado para nomear o prin-
cipal arquivo executavel) e a sua verséo (usada para dar valor a variavel VERSION;

e a substituicdo de AC_CONFIG_HEADEPRor AM_CONFIG_HEADER

e a eliminacao da parte que trata da variavel VERSION que mais tarde era passada
como VERSAQONo momento da chamada do compilador, pois o projeto usa autohe-
ader e a variavel VERSIONcriada com AM_INIT_AUTOMAKEvai automaticamente
para o config.h

AC_INIT (main.cpp)
AM_INIT_AUTOMAKHEalocurses,0.0.1)
AM_CONFIG_HEADH#bnfig.h)

dnl Qual e o compilador C++?
AC_PROG_CXX
AC_LANG_CPLUSPLUS
AC_PROG_MAKE_SET

AC_CHECK_LIBncurses,main,, AC_MSG_ERR@Rstale a biblioteca 'ncurses™))

AC_OUTPUMakefile)

Figura 5.12: Exemplo de configure.in para uso do automake

O proximo passo é criar o arquivo Makefile.am , conforme a Figura[5.13] A macro
AUTOMAKE_OPTION& usada para definir alguns padrdes para o funcionamento global do
automake. Normalmente se usa op¢ao gnu para criar programas distribuidos sob a licenca
GPL, mas o exemplo apresenta a opc¢éo foreign que deixa o0 automake menos exigente
a respeito do que o pacote de distribuicdo deve conter. Isso sera comentado a seguir.

AUTOMAKE_OPTIONS = foreign
bin_PROGRAMS = alocurses
alocurses_SOURCES = main.cpp

Figura 5.13: Exemplo de Makefile.am para criagdo do Makefile.in

A macro bin_PROGRAMSserve para indicar quais sao os programas (arquivos execu-
taveis) que devem ser criados além de dizer que, quando instalados, os programas devem ir

"Note que as macros do automake comecam com “AM” ao contrario das macros do autoconf, que come-
¢am com “AC”.

138 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

para o diretério especificado pela variavel bindir ~ (normalmente /usr/local/bin). Pro-
gramas que devem ser usados somente pelo super-usuario podem ser indentificados pela
macro shin_ PROGRAMS A grande variedade de macros do automake permite fornecer ra-
pidamente toda a informacédo necesséaria para a construcdo dos varios alvos no arquivo
Makefile . Consulte a documentag&o do automake para encontrar macros para as neces-
sidades do seu programa especifico.

A macro alocurses_ SOURCES serve para indicar quais sdo os arquivos que devem
ser compilados para criacdo do programa (alvo) alocurses . A parte minuscula das ma-
cros, como vocé deve estar percebendo, € variavel e relativa ao programa especificado. A
parte escrita em mailsculas é fixa e descrita na documentacao do automake.

Depois de criado o arquivo Makefile.am , € possivel criar 0s outros arquivos de con-
figuracdo automaticamente. As regras do automake, colocadas no configure.in nao sao
conhecidas pelo autoconf, mas podem ser criadas, quase da mesma forma que um usuario
pode criar suas proprias macros e adiciona-las as outras com o programa aclocal . A
diferenca é que ao invés de criar um arquivo acinclude.m4 que seria usado pelo aclocal
para criar o aclocal.m4 (que conteria as novas macros), executar aclocal sem criar
nenhuma descricéo € suficiente. O aclocal encontra as definicdes do automake no diretério

/usr/share/aclocal , onde existem também macros para facilitar o uso de bibliotecas
especificas como “GTK”, “gthreads” dentre outras que podem estar instaladas na sua ma-
quina.

Para criar os arquivos de configuracdo, deve-se entdo executar os programas aclocal
autoheader , autoconf e automake , nesta ordem, como no comando aclocal &&
autoheader && autoconf && automake -a . A opcgéo -a’ ordena que o automake
cri automaticamente alguns arquivos cuja existéncia aumenta a portabilidade de uma
distribuicdo (usados em alvos como install), a saber:

e install-sh . script que serve para copiar arquivos alterando suas permissoes,
controlado por variaveis de nomes pré-determinados;

e mkinstalldirs . script usado para criar diretorios caso nao existam;

e missing : script usado para checar a existéncia de arquivos ou diretorios alertando
0 usudario a respeito de problemas de instalacdo com mensagens padronizadas.

O uso da opcdo gnu na macro AUTOMAKE_OPTIONSXxigiria também a existéncia
dos arquivos INSTALL, COPYING NEWSREADMEAUTHORS ChangelLog, com declara-
cOes sobre licenca de uso e documentacdo do programa de uma maneira geral. Os dois
primeiros podem ser copiados de modelos do automake (pela opcéo ’-a’), mas 0s quatros
ultimos precisam realmente ser escritos.

8Na verdade os arquivos séo copiados de /usr/share/automake ou, mais precisamente, séo feitos links
simbélicos que irdo virar arquivos quando o pacote do programa for criado pelo uso do alvo dist

RPMS

6.1 INTRODUCAO

A sigla RPM significa Red Hat Package Manager (Gerenciador Red Hat de Pacotes,
visto que o RPM foi criado pela empresa Red Hat para ser usado na distribuicdo Linux
que leva seu nome, entretanto como o RPM ¢é distribuido sob licenca GPL, varias outras
distribuicdes adotam o RPM. Um “pacote” € um conjunto de arquivos (executaveis, dados
e documentacao) que formam um aplicativo (ou parte de um aplicativo) como por exemplo
um editor de textos. O nome “rpm” € usado para indicar o formato dos arquivos que contém
pacotes RPM e é também o nome do programa que gerencia esses pacotes. Como exem-
plo de formatos semelhantes ao RPM, podemos citar o “MSI” da MicroSoft e o DEBIAN
(arquivos ‘.deb’) da distribuicdo Debian.

Gerenciar pacotes significa instalar, atualizar e desinstalar programas. A tarefa é mais
complicada do que simplesmente copiar e apagar arquivos pois muitos programas depen-
dem de outros (ou dependendem de bibliotecas) para funcionar. Uma caracteristica de
destaque do formato RPM é capacidade de tratar tanto programas distribuidos na forma de
cédigo fonte (em arquivos chamados de source RPMs) como aqueles distribuidos na forma
binario (arquivos executaveis ja compilados).

O objetivo deste texto € apresentar conceitos sobre RPM em quantidade suficiente
para se conseguir criar um pacote RPM a partir do codigo fonte de um programa. Para
uma referéncia mais completa, recomenda-se a leitura de [Bailey (1998)] e [Barnes (1999)].
Entre os motivos principais para uso do formato RPM estéo:

e maior portabilidade do cédigo (o formato RPM ja foi convertido, entre outros, para
0 Solaris e 0 Windows);

¢ facilidade de administracdo dos programas e bibliotecas instaladas (utilizando-se
arquivos RPMs bem construidos é praticamente impossivel ter conflito de bibliote-
cas);

1Alguns preferem RPM Package Manager - que é uma boa maneira de tornar a sigla recursiva, como
tantas outras no mundo Unix

140 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

« facilidade de atualizagéo de pacotes?| e
¢ verificacdo de integridade antes e depois da instalacao.

Observe que mesmo distribuicdes Linux ndo baseadas no formato RPM, como o
Slackware, acabam por criar aplicativos que tentam proporcionar essa funcionalidade.

6.2 CRIANDO PACOTES RPM

No Capitulo [5 foi apresentado o uso de ferramentas de compilagéo e distribuicéo
num exemplo bastante simples, chamado de “alocurses”, que € um programa que usa a
biblioteca “ncurses”. Vamos continuar o seu desenvolvimento de maneira a criar um pacote
RPM.

O primeiro passo € criar um arquivo spec que contém a descricdo do programa, ins-
trucdes sobre como ele deve ser compilado e uma lista de arquivos que serao instalados. O
nome desse arquivo, por convencao, deve ser algo como nome-verséo-lan(;amento.spe
que, no exemplo apresentado na Figura[6.1], seria alocurses-0.0.1-1.spec

Na primeira parte do arquivo, conhecida como preambulo, pode-se ver uma sec¢ao
com definicbes de valores para varidveis auto-explicativas. Existem outras varidveis, mas
as apresentadas aqui sao suficientes para pacotes pequenos. Os pares “variavel: valor” do
preambulo ndo podem ocupar mais de uma linha. A variavel source ¢é usada na hora da
compilacdo do programa, e por isso a ultima parte da URL (ou o valor todo, mesmo que hao
seja uma URL) deve ser um nome verdadeiro. A seguir, aparece uma secao de descricao
do pacote, demarcada pelo simbolo %description . E essa descri¢do que é apresentada
pelo programa rpm quando se pede informac¢des sobre um pacote.

Depois da secédo de descricao, aparecem, respectivamente as se¢des de preparacao,
compilacéo e instalacdo do programa. Na secao de preparacao coloca-se comandos para
descompactar e deixar 0os arquivos hum estagio proprio para a compilagdo. No exemplo,
usou-se a macro %setup que automaticamente apaga arquivos de possiveis compilagdes
anteriores e descompactar o arquivos presentes no tar.gz. Apos isso é executado o script
configure que devera gerar o arquivo Makefile . E comum o uso desta secdo para
aplicacao de patches ao codigo fonte ou execucdo de scripts que tornam possivel a com-
pilagdo de programas de terceiros sem que haja necessidade de alterar seu coédigo fonte
diretamente.

Na secao de compilacao, basta executar o make, afinal o arquivo makefile foi prepa-
rado desta forma. Para instalar para chamar o alvo install . A secdo demarcada por

2Por pacote entende-se qualquer conjunto de arquivos, como: programas, bibliotecas e documentagéo,
entre outros.

30 termo langamento vem do inglés release e é usado para indicar nova distribuicio de versdo que ja havia
sido distribuida antes, possivelmente usando op¢des diferentes no processo de compilacao.

RPMS 141

Summary. Exemplo de criacao de pacotes RPM

Name alocurses

Version : 0.0.1

Release : 1

Copyright : dominio publico

Group : Applications/Inutilities

Source : ftp://algum.lugar.net/alocurses-0.0.1.tar.gz

URL http://www.nenhum.lugar.net/inutilidades/alocurses/
Packager : Bruno Schneider <ninguem@nenhum.lugar.net>
Requires: ncurses >= 3.0

%description

Este e’ um programa que usa a biblioteca ‘ncurses’. Ele foi usado como
exemplo de criacao de pacotes RPM. Instale se estiver aprendendo a criar
pacotes RPM.

%prep
%setup
Jconfigure

%build
make

%install
make install

%clean
fazer nada

%files
/usr/local/bin/alocurses

%changelog
* Sun Oct 06 2002 Bruno Schneider <ninguem@nenhum.lugar.net>
- Criada a primeira versao do spec.

Figura 6.1: Exemplo de arquivo spec

%clean serve para guardar comandos que apaguem arquivos temporarios fora do diret6rio
normal do programa, o que nao foi necessario no exemplo.

Em seguida aparece a se¢do demarcada por %files , que contém uma lista de to-
dos os arquivos que fardo parte do pacote, que por sua vez, sdo 0s arquivos instalados
pelo alvo install . N&o existe uma maneira facil de se fazer essa lista automaticamente,
recomenda-se que ela seja feita manualmente e com muita atencéo. Por fim, aparece a
secdo demarcada por %changelog onde sdo documentadas modificagcbes feitas no pro-
grama.

142 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Para seja possivel criar o pacote RPM, é necessario certificar-se que os seguintes
pré-requisitos estao satisfeitos:

e 0 pacote rpm-build deve estar instalado;

e VOCé pode conseguir permissdo de super-usuario para o processo de cria¢do do pa-
cote (na verdade isso ndo é realmente necessario, mas criar pacotes como usuario
comum é um processo trabalhoso - é bom saber de ante-mao que sera executado

o alvo install , de forma que seu makefile deve proporcionar formas de fazé-lo
como usuario comum - verifique a documentagcédo do RPM se for realmente neces-
sario);

e existe uma copia do seu programa no formato “tar.gz” no diretério utilizado pelo
rpm-build (/usr/src/redhat/'SOURCES nas distribuicbes Red Hat).

Caso tudo esteja certo, execute como super-usuario o comando rpmbuild -ba --clean
alocurses-0.0.1-1.spec . Isto fard com que sejam criados dois arquivos: um com o
sufixo ‘.src.rpm’ e outro com o sufixo “.i386.rpm’. O primeiro contém 0 arquivo spec e o
arquivo .tar.gz enquanto que o segundo contém o spec e 0s arquivos (compilados) listados
na secao %files do spec. Durante o processo de criacdo dos arquivos RPM, é feita uma
checagem automaética para verificar quais bibliotecas dindmicas s&o usadas pelo programa
e essas informacdes sdo colocadas no pacote compilado.

6.3 SEGURANCA

Apesar de ser muito popular entre a maioria dos usuarios de computadores, a insta-
lacdo de programas executaveis € uma pratica insegura, muito mal vista por alguns defen-
sores dos programas livres. Entre os principais argumentos contra ela, esta o fato de que
0s programas poderiam ser alterados, de forma a conter codigo maligno e seria muito dificil
detectar alguma alteragéo.

Na pratica, a instalacédo de codigo fonte, compilado na maquina do usuario apresenta
riscos semelhantes, afinal existe uma grande distancia entre a disponibilizacdo de cddigo
fonte e a leitura do mesmo. O formato RPM procura resolver o problema da seguranca
com a utilizacao de criptografia. Através de criptografia, os pacotes RPM podem receber
uma assinatura digital, que identifica a procedéncia do pacote RPM, além de garantir que o
mesmo néo foi alterado por terceiros.

Para utilizar o tipo de criptografia utilizada nos pacotes RPM, é necessario ter instalado
um programa compativel com o programa Pretty Good Privacy (PG. Numa instalagéo
Linux, o mais recomendado é o programa GNU Privacy Guard (GPGE]). Utilizar ferramentas

4PGP: http://www.pgpi.org/
SGPG ou GnuPG: http://www.gnupg.org/

http://www.pgpi.org/
http://www.gnupg.org/

RPMS 143

de criptografia esta fora do escopo deste texto. Os exemplos descritos a seguir supde que
0 usuério tem um par de chaves (publica e privada) para assinar pacotes RPM, além das
chaves publicas dos distribuidores de pacotes RPM cuja autenticidade sera testadaﬂ Para
maiores informacdes sobre o0 GPG, consulte a documentacdo do mesmo, disponivel em sua
pagina.

Pode-se adicionar uma assinatura digital a pacotes RPM durante a criacdo do pacote
ou depois da mesma. Um pacote RPM pode ser assinado por varias pessoas ou organiza-
¢bes ao mesmo tempo. Quando um pacote € assinado, seus usuarios ndo sao obrigados a
saber trabalhar com criptografia a ndo ser que queiram checar a validade da assinatura.

Para adicionar uma assinatura digital a pacotes RPM, € necessario primeiro especifi-
car qual o programa que sera usado e quem ira fazer as assinaturas. Essa configuracéo do
programa rpm pode ser global, através do arquivo /etc/rpm/macros ou local (para um
determinado usuario) no diretdrio “/.rpmmacros

Seja qual for o arquivo de configuracdo usado, deve-se idenficar qual o programa a
ser utilizado pelo identificador %_signature (atualmente, os valores possiveis sao pgp
ou gpg). Deve-se determinar a identidade de quem vai assinar os pacotes pela macro
% _gpg_name (a identificacdo deve ser exatamente igual a usado no programa de cripto-
grafia). Se a identificacdo ndo pertencer ao chaveiro digital do usuario que executar o rpm,
pode-se definir a localizacao do diretério com as chaves pelo identificador %_gpg_path .
No caso de uso do programa pgp, todos simbolos devem ser alterados de forma a conter

“pgp” no lugar de “gpg”.

%_signature gpg
%_gpg_name Projeto Ginux <ninguem@nenhum.lugar.net>

Figura 6.2: Arquivo de configuragdo do rpm para uso de criptografia

A Figura mostra um exemplo de arquivo de configuracdo que indica que o gpg
sera usado para tratar a criptografia e que os pacotes que forem assinados receberdo a
assinatura identificada por “Projeto Ginux <ninguem@nenhum.lugar.net>".

Depois de configurado € facil incluir a assinatura digital num pacote. Para fazer isso
durante o processo de criacdo do pacote, basta incluir a opcéo --sign durante a criacao
(opgéo -ba) do pacote. Nesse caso, a primeira coisa que o rpm faré € pedir a senha para a
assinatura. Caso ela esteja correta, os arquivos sao compilados e instalados para criagao

6A chave publica usada para verificar a integridade de pacotes distribuidos pela RedHat pode ser encon-
trada no arquivo /usr/share/doc/redhat-release-?.?/RPM-GPG-KEY (os pontos de interrogacédo sao
0 nimero da versao da distribui¢cdo). A maioria das distribuicdes Linux tém um arquivo com sua chave publica
nos CDs de distribuigao.

144 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

do pacote como ocorre normalmente. No final da criacdo do pacote, o rpm devera exibir
mensagens como as apresentadas na Figura[6.3]

Generating signature: 1005

Generating signature using GPG.

Wrote: /usr/src/redhat/SRPMS/alocurses-0.0.1-1.src.rpm
Generating signature: 1005

Generating signature using GPG.

Figura 6.3: Mensagens relativas a assinatura de um pacote RPM sendo criado

Se 0 pacote ja existe, € possivel adicionar uma assinatura, com a opgao --resign
comoemrpm --resign nome-do-pacote.rpm ou com a opgao --addsign que subs-
titui a assinatura anterior.

Para verificar se um pacote esta corretamente assinado, indicando que sua integridade
é confirmada pela pessoa ou entidade possidora da assinatura, basta usar a op¢éo -K . A Fi-
gura[6.4mostra um caso de assinatura correta (para o pacote alocurses-0.0.1-1.i386.rpm
e um caso de assinatura incorreta (para o pacote nss_ldap-186-1.src.rpm).

[prompt]$ rpm -K alocurses-0.0.1-1.i386.rpm

alocurses-0.0.1-1.i386.rpm: md5 gpg OK

[prompt]$ rpm -K nss_ldap-186-1.src.rpm

nss_ldap-186-1.src.rpm: md5 (GPG) NOT OK (MISSING KEYS: GPG#F9651D5A)
[prompt]$

Figura 6.4: Verificacdo da integridade de pacotes RPM

O programa rpm escreve ao lado do nome do pacote 0 que esta sendo testado e
quais testes falharam. No primeiro caso, os testes “md5” e “gpg” resultaram em sucesso.
O teste “md5” € um checksum (um tipo de cdodigo para verificacdo de erros) disponivel em
qualguer pacote RPM que serve para verificar se o arquivo ndo esta corrompido. Esse teste
nao é suficiente para saber se o arquivo ndo foi deliberadamente alterado por alguém mal
intencionado. O teste “gpg” € efetivamente o teste da assinatura digital. Se um teste falha,
como no caso do pacote nss_ldap-186-1.src.rpm , 0 home do teste aparece entre
parénteses. Ainda neste exemplo, ha ao lado uma explicacdo de que o teste “gpg” falhou
por falta da chave publica de quem assinou o pacote.

v

AGENDAMENTO DE TAREFAS

7.1 INTRODUCAO

O Linux possui um recurso muito util para o administrador de sistemas que € a possi-
bilidade de se agendar uma tarefa para ser executada num determinado dia e horario, sem
a necessidade do administrador estar presente no momento. Com isso, pode-se programar
tarefas administrativas para serem realizadas em horérios pré-definidos, sem intervencéo
humana. Tarefas como realizacdo de backups periddicos, rotacdo automatica de logs, re-
mocao de links simbdlicos quebrados, atualizacdo de pacotes, entre tantas outras, podem
ser programadas para serem executadas em horarios e/ou dias em que o sistema estiver
com uma carga menor de servicos. Neste capitulo sdo apresentados os agendadores de
tarefas Cron e At. Informac6es mais completas podem ser obtidas nas paginas do respec-
tivos manuais.

7.2 USO DO CRON

7.2.1 Caracteristicas Gerais

O Cron permite agendar tarefas para serem executadas num exato momento, podendo
ser especificados 0 més, dia do més e/ou da semana, hora e minuto. Essas tarefas podem
ser rotineiras, repetidas varias vezes num intervalo pré-determinado. O Cron consiste de
um daemon chamado crond , que € inicializado junto com o sistema, e de arquivos de
configuracdo chamados de crontab (cron table ou tabela cron).

Através dos arquivos cron.allow e cron.deny , o administrador de sistemas pode
determinar quais usuarios podem ou néo usar os servicos do Cron. O usuarios que es-
tiverem incluidos no arquivo cron.allow terdo permissao para usar o Cron, enquanto
gue 0s usuarios com o nome em cron.deny néo terdo acesso ao Cron. Se 0 arquivo
cron.allow n&o existir, todos 0s usuarios terdo permissao de usar o Cron, exceto 0s que
estiverem listados em cron.deny . Se nenhum dos dois existir, todos os usuarios poderao

146 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

usar o Cron. A localizagc&o desses dois arquivos pode variar em funcao de cada distribuicao,
mas geralmente ficam em /etc/cron.d

As tarefas agendadas pelos usuarios sdo configuradas em arquivos crontab que
ficam localizados em /var/spool/cron/ . Cada usuério terd um arquivo individual com o
seu proprio nome. Assim, o usuario fulano tera o arquivo /var/spool/cron/fulano
com as suas configuracoes.

7.2.2 Formato do Arquivo Crontab

Os arquivos crontab tém o seu formato apresentado na Figura [7.1, Os campos
minuto , hora , dia , mése dia-da-semana informam quando executar o comando. Seus
valores possiveis séo mostrados na Tabela[7.1], e um exemplo é apresentado na Figura[7.2]
Nesse exemplo, o arquivo aviso.sh sera executado em todos 0s meses, de segunda-feira
a sexta-feira, as 07:30 horas da manha.

minuto hora dia més dia-da-semana comando ‘

Figura 7.1. Formato das linhas do arquivo crontab

Tabela 7.1: Valores possiveis nos campos crontab

Campo Valores
minuto 0abs59
hora 0aZ23
dia la3l
més lal2

dia-da-semana 0 a 6 (0 corresponde ao domingo)

307 * * 15 /usr/local/bin/aviso.sh H

Figura 7.2: Exemplo de um arquivo crontab

Nota-se no exemplo da Figura[7.2] que, além dos nimeros mostrados na Tabela [7.1]
estdo presentes os simbolos asterisco (*) e hifen (-). O asterisco representa todos 0s
valores possiveis e o0 hifen define um intervalo de valores. H4 também a barra (/) que pode
definir valores uniformemente espacados, e a virgula (,) que define uma lista de valores.
A Figura mostra um exemplo em que uma tarefa é executada de 10 em 10 minutos,
durante os sdbados e domingos.

Agendamento de Tarefas 147

*16 * x * 06 Jusr/local/bin/vassoura.sh

Figura 7.3: Utilizando intervalos num arquivo crontab

7.2.3 Criando um Arquivo Crontab

Para se criar um arquivo crontab usa-se o comando de mesmo nome, crontab ,
que possui as opgdes mostradas na Tabela [7.2] Se o usuério ainda n&o tiver um arquivo
crontab , este devera ser criado a partir de um editor de textos qualquer. No exemplo da
Figura[7.4] € mostrado o arquivo de texto teste_cron com instru¢des para ser usado com
o crontab . A Figura mostra a criagdo do arquivo crontab . Esse arquivo crontab

sera criado no diretorio /var/spool/cron com 0 mesmo nome do usuario que o criou.
Para edita-lo, usa-se apenas crontab -e e automaticamente € aberto o arquivo crontab
do usuéario. Para apenas listar o conteudo, usa-se crontab -l , e para remové-lo, usa-se
crontab -r

Tabela 7.2: Opc¢des do comando crontab

Opcédo Descricao
-e Edita o arquivo crontab atual do usuério.

-l Lista o conteudo do arquivo crontab do usuario.

-r Remove o arquivo crontab do usuario.

305 * * 1 rm -rf tmp/*
*30 * * * 1.5 /usr/local/bin/monitora.sh
15 7,17 * * 1,3,5 /home/fulano/lembranca.sh

Figura 7.4: Tarefas para o crontab

[[prompt]ﬂs crontab teste_cron J

Figura 7.5: Criando um arquivo crontab

O usuario root tem acesso a todos os arquivos crontab dos usuarios e, também
a um arquivo crontab para agendamento de tarefas do sistema: /etc/crontab . Esse
arquivo possui um campo a mais onde o administrador do sistema pode especificar o nome
do usuario que executard o comando. A Figura mostra um exemplo desse arquivo.
No inicio do arquivo, o Cron define algumas varidveis para a sua execu¢do. O comando

148 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

run-parts € responsavel pela execucdo de todos os scripts que estiverem dentro dos
diretdrios correspondentes. Cada diretério € executado com uma periodicidade diferente. A
Tabela[7.3 mostra a periodicidade de cada diretdrio.

letc/crontab: system-wide crontab

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root

HOME=/

run-parts

01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

Figura 7.6: Arquivo /etc/crontab

Tabela 7.3: Periodicidade dos diretorios contidos no arquivo /etc/crontab

Diret6rio Periodicidade
/etc/cron.hourly De hora em hora.
/etc/cron.daily Diariamente.
/etc/cron.weekly Semanalmente.
/etc/cron.monthly Mensalmente.

O uso desses diretorios € muito simples, bastando apenas que se coloque o script
desejado, com permissdo de execuc¢do, dentro do respectivo diretério. Por exemplo, um
script que sera executado diariamente sera colocado no diretério /etc/cron.daily ,eum
gue sera executado de hora em hora sera colocado no diretdrio /etc/cron.hourly . Isso
facilita o trabalho do administrador de sistemas, que pode separar 0s scripts em diretérios
conforme sua periodicidade.

7.3 USO DO AT

7.3.1 Caracteristicas Gerais

Ao contrario do Cron, o At ndo pode ser usado para agendar tarefas que se repe-
tem periodicamente, ou seja, deve ser usado somente para tarefas que serdo executadas

Agendamento de Tarefas 149

apenas uma vez. Uma caracteristica muito Gtil do At é a possibilidade de execucéo de pro-
gramas que passaram do horario de sua execucéo, devido ao computador estar desligado
no momento ou falta de energia elétrica.

Assim como o Cron, o At possui dois arquivos para permitirem ou negarem seu uso:
/etc/at.allow e /etc/at.deny , que funcionam da mesma forma que 0s arquivos
cron.allow e cron.deny |, respectivamente (Segéo|[7.2.1).

A sintaxe do comando at é mostrada na Figura[7.7, onde opgdes sdo as mostradas
na Tabela[7.4] O campo tempo pode ser preenchido com os valores da Tabela[7.5]

at [opcdes] tempo

Figura 7.7: Sintaxe do comando at .

Tabela 7.4: Opcdes do comando at .

Opcao Descricédo

-C Mostra as tarefas registradas.
-d Remove uma tarefa especifica, 0 mesmo que atrm .
-f Lé as tarefas a partir de um arquivo.

-| Lista as tarefas agendadas pelo usuario, 0 mesmo que atq .
-m Envia um e-mail ao usuario quando a tarefa for finalizada.

-V Informa a hora em que uma tarefa sera executada.

7.3.2 Usando o At

O at aceita comandos de trés formas. A primeira e mais utilizada é através da entrada
padrdo, quando o usuério digita o comando at , suas op¢des e o tempo, e se abre um
segundo shell para que se digite a tarefa a ser agendada e finaliza com um sinal de EOF
(<Ctrl+D>). Veja um exemplo na Figura[7.8|

A segunda forma € ler a tarefa a ser agendada de um arquivo, através da opcéao -f , e
a terceira, é através de um redirecionamento através de um pipe (|). A Figura[7.9 mostra
exemplos de uso do at.

150 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

Tabela 7.5: Valores permitidos para o campo tempo .

Campo tempo Descricao

hh:mm [modificadores] Assume-se, por padrao, um relégio de 24 horas. Se
usado os modificadores amou pm usa-se um relogio
de 12 horas.

midnight, noon, teatime Significam meia-noite, meio-dia, 16:00hs e agora, res-

e now pectivamente. Substituem o formato numérico. O now

€ usado em conjunto como sinal “+” seguido de um
namero e uma das palavras-chave: minute , hour ,
day, week, month , ou year .

més dia[,ano] O més é um dos doze meses escrito por completo ou
com as trés primeiras letras. O dia € um numero
entre 1 a 31, e o ano é formado de quatro digitos.

dia Representa o dia da semana escrito por inteiro ou
com as trés primeiras letras.

today, tomorrow Indica o dia atual ou o dia seguinte, respectivamente.

P
[prompt]$ at 12:02 today

at> cd /home/herlon; mkdir teste_at

at> <EOT> < ATENCAO: Isso ndo foi digitado, e sim <CTRL+D>
warning: commands will be executed using /bin/sh

job 8 at 2005-03-05 12:02

[prompt]$

Figura 7.8: Usando o at através da entrada padrao.

([prompt]$ at -f tarefa_at.txt 5 pm Saturday

warning: commands will be executed using /bin/sh

job 10 at 2005-03-06 17:00

[prompt]$ echo "cd /home/herlon; mkdir teste_at 2" | at 12:15 today
warning: commands will be executed using /bin/sh

job 11 at 2005-03-05 12:15

[prompt]$

-

Figura 7.9: Exemplos de uso do at .

REFERENCIAS BIBLIOGRAFICAS

[Bailey (1998)] Bailey, E. C. Maximum RPM, Red Hat, 1998.

[Barnes (1999)] Barnes, D. Rpm howto, URL http://www.rpm.org/RPM-HOWTO/ '
1999.

[Bergo (2001)] Bergo, F. P. G. Autotut - using gnu auto{conf,make,header}, URL http://
www.seul.org/docs/autotut , 2001.

[Budlong (1999)] Budlong, M. Dicas de boas praticas de programacéao shell, URL http:
/Igeocities.yahoo.com.br/cesarakg/tips-shell-programming.htmli :
1999.

[Cooper (2005)] Cooper, M. Advanced Bash-Scripting Guide, URL http://www.tldp.
org/LDP/abs/ |, 2005.

[Dias (2000)] Dias, R. S. Revista do Linux, Curitiba, Julho de 2000. p. 52-60.

[Dougherty & Robbins (1997)] Dougherty, D & Robbins, A. Sed & Awk, 2nd Edition, O'Reilly,
1997

[Friedl (2002)] Friedl, J. E. F. Mastering Regular Expressions, 2rd Edition, O’Reilly, 2002.

[FSF (2003)] Free Software Foundation. The GNU Awk User’'s Guide, 3rd Edition, URL
http://www.gnu.org/software/gawk/manual/gawk.html , 2003.

[Jargas (2002)] Jargas, A. M. Expressdes Regulares, URL http://guia-er.
sourceforge.net/ , 2002.

[Jargas (2003)] Jargas, A. M. Sed-Howto, URL http://www.aurelio.net/sed/
sed-HOWTO/, 2002.

[Jargas (2004)] Jargas, A. M. Shell Script - Por que programar tem que ser divertido, URL
http://www.aurelio.net/shell/ , 2004.

http://www.rpm.org/RPM-HOWTO/
http://www.seul.org/docs/autotut
http://www.seul.org/docs/autotut
http://geocities.yahoo.com.br/cesarakg/tips-shell-programming.html
http://geocities.yahoo.com.br/cesarakg/tips-shell-programming.html
http://www.tldp.org/LDP/abs/
http://www.tldp.org/LDP/abs/
http://www.gnu.org/software/gawk/manual/gawk.html
http://guia-er.sourceforge.net/
http://guia-er.sourceforge.net/
http://www.aurelio.net/sed/sed-HOWTO/
http://www.aurelio.net/sed/sed-HOWTO/
http://www.aurelio.net/shell/

152 EDITORA - UFLA/FAEPE - Automacéao de Tarefas

[Jargas (2005)] Jargas, A. M. Aurélio :: Sed, URL http://www.aurelio.net/sed/ ,
2005.

[Michael (2003)] Michael, R. K. Dominando Unix Shell Scripting, Campus, 2003.
[Neves (2003)] Neves, J. C. Programacao Shell Linux, Terceira Edicéo, Brasport, 2003.

[Pizzini (1998)] Pizzini, K. sed, a stream editor, URL http://www.gnu.org/software/
sed/manual/sed.html , 1998

[Robbins (2001)] Robbins, A. Effective Awk Programming, 3rd Edition, O'Reilly, 2001. .

[Schneider (2003)] Schneider, B. O. Desenvolvimento de Scripts e Pacotes, Curso de Pés
Graduacéo “Lato Sensu” (Especializacdo) a Distancia em Administracdo em Redes
Linux, UFLA/FAEPE, Lavras, 2003.

[Schwartz & Phoenix (2001)] Schwartz, R. L. & Phoenix, T. Learning Perl, 3rd Edition,
O’Reilly, 2001.

[Vaughan, et al. (2001)] Vaughan, G. V.; Elliston, B.; Tromey, T. and Taylor, I. L. GNU Auto-
conf, Automake, and Libtool, New Riders, 2001.

[Wall, et al. (2000)] Wall, L.; Christiansem, T. and Orwant, J. Programming Perl, 3rd Edition,
O’Reilly, 2000.

http://www.aurelio.net/sed/
http://www.gnu.org/software/sed/manual/sed.html
http://www.gnu.org/software/sed/manual/sed.html

	Introdução
	Shell-Script
	Introdução
	Shell
	Shell-Script
	Principais Shells

	Características do Bash para Shell-Scripts
	Metacaracteres
	Variáveis de Ambiente e de Sistema
	Redirecionamento de Entrada e Saída

	Comandos Úteis
	grep, egrep e fgrep
	wc
	cut
	paste
	head
	tail
	expr
	bc
	sort
	uniq

	Características Iniciais do Shell-Script
	O Primeiro Script
	Aspas Duplas -- (")
	Aspas Simples ou Apóstrofo -- (')
	Apóstrofo Invertido -- (`)
	Barra Invertida -- ("026E30F)
	Parênteses

	Variáveis
	Variáveis de Usuário
	Usando Variáveis
	Variáveis Incorporadas

	Operadores
	Operadores de String
	Operadores de Números
	Operadores de Arquivos
	Operadores Lógicos

	Estruturas de Controle
	Estruturas Condicionais
	Estruturas de Repetição
	Comando de saída -- exit

	Funções
	Scripts Interativos
	read
	select
	Prós e Contras da Interatividade

	Exemplo -- Construindo uma Lixeira: parte 1/2
	Script lixo.sh

	Sed, Awk e Expressões Regulares
	Introdução
	Sed
	Características Gerais
	Substituir -- s
	Imprimir -- p
	Deletar -- d
	Acrescentar -- a
	Inserir -- i
	Trocar -- c
	Finalizar -- q

	Awk
	Características Gerais
	Funcionamento
	Padrões e Procedimentos
	Saída Formatada
	Variáveis
	Funções Internas
	Estruturas Condicionais
	Estruturas de Repetição
	Vetores

	Exemplo -- Construindo uma Lixeira: parte 2/2
	Script lixeira.sh

	Expressões Regulares
	Características Gerais
	Metacaracteres

	Perl
	Introdução
	Características Básicas de Perl
	O Primeiro Programa

	Variáveis em Perl
	Variável scalar
	Variável array
	Variável hash

	Operadores
	Operadores Aritméticos
	Operadores de String
	Operadores de Atribuição
	Operadores Lógicos
	Operadores de Comparação
	Operadores de Teste de Arquivo

	Estruturas de Controle
	Estruturas Condicionais
	Estruturas de Repetição

	Handle de arquivos
	Sub-Rotinas
	Escopo de Variáveis

	Referências
	Expressões Regulares
	Exemplo Final -- Um Analisador de Logs

	Ferramentas de Desenvolvimento
	Introdução
	O programa make
	AUTOTOOLS

	RPMS
	Introdução
	Criando Pacotes RPM
	Segurança

	Agendamento de Tarefas
	Introdução
	Uso do Cron
	Características Gerais
	Formato do Arquivo Crontab
	Criando um Arquivo Crontab

	Uso do At
	Características Gerais
	Usando o At

	

