

Parte 1
IP e Roteamento

1.1 – Introdução

✔ A camada de rede está relacionada à transferência de pacotes entre a origem e o
destino

✔ A camada de rede deve conhecer a topologia da sub-rede de comunicações (ou
seja, o conjunto de todos os roteadores) e escolher os caminhos mais apropriados
através dela

✔ A camada de rede deve ter o cuidado de escolher rotas que evitem sobrecarregar
algumas das linhas de comunicação e roteadores

1.2 – Comutação de pacotes store-and-forward

✔ Um host transmite um pacote para o roteador mais próximo, seja em sua
própria LAN ou sobre um enlace ponto a ponto para a concessionária de
comunicações

✔ O pacote é armazenado ali até chegar totalmente, de forma que o total de
verificação possa ser conferido

✔ Em seguida, ele é encaminhado para o próximo roteador ao longo do caminho,
até alcançar o host de destino, onde é entregue

1.3 – Serviços oferecidos à camada de transporte

✔ Os serviços da camada de rede foram projetados tendo em vista os
objetivos a seguir:

– Os serviços devem ser independentes da tecnologia de roteadores

– A camada de transporte deve ser isolada do número, do tipo e da topologia dos
roteadores presentes

– Os endereços de rede que se tornaram disponíveis para a camada de transporte
devem usar um plano de numeração uniforme, mesmo nas LANs e WANs

✔ A camada de rede deve fornecer serviço orientado a conexões ou serviço
sem conexões?

✔ Comunidade da Internet → sem conexões
– 30 anos de experiência com uma rede de computadores ativa e real

– A tarefa dos roteadores é tão somente movimentar pacotes

– A sub-rede é inerentemente pouco confiável, independente de como tenha sido
projetada

– Os hosts devem aceitar o fato de que a sub-rede é pouco confiável e fazerem eles
próprios o controle de erros e o controle de fluxo

– Não deve ser realizada nenhuma forma de ordenação de pacotes e controle de
fluxo, pois os hosts já cuidarão disso de qualquer maneira

– Cada pacote deve ter o endereço de destino completo, pois todos são transportados
independentemente de seus predecessores

– e.g.: Internet

✔ Companhias telefônicas → orientado a conexões
– 100 anos de experiência bem-sucedida com o sistema telefônico mundial

– A qualidade de serviço é o fator dominante e, sem conexões na sub-rede, é muito
difícil alcançar qualidade de serviço, em especial no caso de tráfego de tempo
real, como voz e vídeo

– e.g.: redes ATM

✔ É interessante observar que, à medida que as garantias de qualidade de
serviço estão se tornando cada vez mais importantes, a Internet está
evoluindo

✔ Se for oferecido o serviço sem conexões, os pacotes serão injetados
individualmente na sub-rede e roteados de modo independente uns dos
outros

✔ Não será necessária nenhuma configuração antecipada

✔ Os pacotes são chamados de datagramas, e a sub-rede de sub-rede de
datagramas

✔ Se for usado o serviço orientado a conexões, terá de ser estabelecido um
caminho desde o roteador de origem até o roteador de destino, antes de
ser possível enviar quaisquer pacotes de dados

✔ Essa conexão é chamada circuito virtual, em analogia com os circuitos
físicos estabelecidos pelo sistema telefônico, e a sub-rede é denominada
sub-rede de circuitos virtuais

1.4 – Implementação do serviço sem conexões

1.5 – Implementação do serviço orientado a
conexões

✔ A ideia que rege os circuitos virtuais é evitar a necessidade de escolher uma
nova rota para cada pacote enviado

✔ Quando uma conexão é estabelecida, escolhe-se uma rota desde a máquina
de origem até a máquina de destino, e essa rota é armazenada em tabelas
internas dos roteadores.

✔ A rota é usada por todo o tráfego que flui pela conexão

✔ Quando a conexão é liberada, o circuito virtual também é encerrado

✔ Cada pacote transporta um identificador, informando a que circuito virtual
ele pertence

1.6 – Comparação entre sub-redes de circuitos
virtuais e de datagramas

✔ Compromisso entre espaço de memória do roteador e largura de banda
– Os circuitos virtuais permitem que os pacotes contenham números de circuitos em vez

de endereços de destino completos

– Se os pacotes tenderem a ser muito pequenos, um endereço de destino completo em
cada pacote poderá representar um volume significativo de overhead e, portanto,
haverá desperdício de largura de banda

– O preço pago pelo uso de circuitos virtuais internamente é o espaço de tabela dentro
dos roteadores

– Uma sub-rede de datagramas pode ter uma entrada para cada destino possível,
enquanto uma sub-rede de circuitos virtuais só precisa de uma entrada para cada
circuito virtual

✔ Compromisso entre o tempo de configuração e o tempo de análise de
endereço

– O uso de circuitos virtuais requer uma fase de configuração, o que leva tempo e
consome recursos

– Entretanto, é fácil descobrir o que fazer com um pacote de dados em uma sub-rede
de circuitos virtuais

✔ Os circuitos virtuais têm algumas vantagens na garantia de qualidade de
serviço e ao evitarem o congestionamento dentro da sub-rede:

– os recursos (por exemplo, buffers, largura de banda e ciclos da CPU) podem ser
reservados antecipadamente, quando a conexão é estabelecida

✔ Os circuitos virtuais têm um problema de vulnerabilidade:
– se um roteador de um circuito virtual apresentar uma falha e perder sua

memória todos os circuitos virtuais que estiverem passando por ele terão de ser
interrompidos

– se um roteador de datagramas ficar fora do ar, somente os usuários cujos
pacotes estiverem enfileirados no roteador naquele momento serão afetados

– a perda de uma linha de comunicação é fatal para os circuitos virtuais que a
utilizam

✔ Os datagramas permitem que os roteadores equilibrem o tráfego pela
sub-rede:

– as rotas podem ser parcialmente alteradas durante uma longa sequência de
transmissões de pacotes

1.7 – Algoritmos de roteamento

✔ A principal função da camada de rede é rotear pacotes da máquina de origem
para a máquina de destino

✔ Na maioria das sub-redes, os pacotes necessitarão de vários hops para cumprir
o trajeto

✔ Os algoritmos que escolhem as rotas e as estruturas de dados que eles
utilizam constituem um dos elementos mais importantes do projeto da camada
de rede

✔ O algoritmo de roteamento é a parte do software da camada de rede
responsável pela decisão sobre a linha de saída a ser usada na transmissão do
pacote

– Se a sub-rede utilizar datagramas internamente, essa decisão deverá ser tomada mais
uma vez para cada pacote de dados recebido

– Se a sub-rede utilizar circuitos virtuais internamente, as decisões de roteamento serão
tomadas somente quando um novo circuito virtual estiver sendo estabelecido

✔ Propriedades que são desejáveis em um algoritmo de roteamento:
correção, simplicidade, robustez, estabilidade, equidade e otimização

✔ Conflito entre equidade e otimização

✔ O que está se tentando otimizar?
– minimização do retardo médio de pacote

– maximização do throughput total da rede
● operar qualquer sistema de enfileiramento em uma velocidade próxima a de sua

capacidade máxima implica um longo retardo de enfileiramento

– minimizar o número de hops que um pacote deve percorrer

✔ Roteamento adaptativo X não-adaptativo, ou, roteamento dinâmico X
estático

✔ Os algoritmos adaptativos se diferem em:
– lugar em que obtêm suas informações

● e.g.: no local, de roteadores adjacentes ou de todos os roteadores

– momento em que alteram as rotas
● e.g.: a cada T segundos, quando a carga se altera ou quando a topologia muda

– unidade métrica utilizada para a otimização
● e.g.: distância, número de hops ou tempo de trânsito estimado

Princípio da otimização

✔ Esse princípio estabelece que, se o roteador B estiver no caminho ótimo
entre o roteador A e o roteador C, o caminho ótimo de B até C também
estará na mesma rota

✔ Consequência direta do princípio de otimização:
– o conjunto de rotas ótimas de todas as origens para um determinado destino forma

uma árvore com raiz no destino (árvore de escoamento)
● uma árvore de escoamento não é necessariamente exclusiva; podem existir outras

árvores com caminhos de mesmo tamanho

✔ O objetivo de todos os algoritmos de roteamento é descobrir e utilizar as
árvores de escoamento em todos os roteadores

✔ Uma árvore de escoamento não contém loops:
– Cada pacote será entregue dentro de um número finito e limitado de hops.

✔ Na prática, enlaces e roteadores podem sair do ar e voltar à atividade
durante a operação:

– Desse modo, diferentes roteadores podem ter ideias distintas sobre a topologia
atual

1.7.1 – Roteamento pelo caminho mais curto

✔ A ideia é criar um grafo da sub-rede, com cada nó do grafo representando um
roteador e cada arco indicando uma linha de comunicação (geralmente
chamada enlace)

✔ Para escolher uma rota entre um determinado par de roteadores, o algoritmo
simplesmente encontra o caminho “mais curto” entre eles no grafo

✔ Caminho “mais curto”:
– Número de hops;

– Distância geográfica em kilômetros;

– Retardo médio de enfileiramento e transmissão;

– Largura de banda;

– Tráfego médio;

– Custo de comunicação;

– Comprimento médio da fila

✔ Alterando-se a função de ponderação (atribuição de pesos), o algoritmo
calcularia o caminho "mais curto" medido de acordo com qualquer critério
ou com uma combinação de critérios

✔ Existem diversos algoritmos para se calcular o caminho “mais curto” entre
dois nós de um grafo. Estudaremos o algoritmo de Dijkstra (1959)

– Cada nó é identificado (entre
parênteses) por sua distância a
partir do nó de origem ao longo do
melhor caminho conhecido

– Inicialmente, nenhum caminho é conhecido; portanto, todos os nós são rotulados
com infinito

– À medida que o algoritmo prossegue e os caminhos são encontrados, os rótulos
podem mudar, refletindo melhores caminhos

– Um rótulo pode ser provisório ou permanente

– No início, todos são provisórios

– Quando se descobre que um rótulo representa o caminho mais curto possível até
a origem desse nó, ele se torna permanente e nunca mais será alterado

– Desejamos encontrar o caminho mais curto de A até D

– Começamos marcando o nó A como permanente (círculo preenchido)

– Examinamos separadamente cada um dos nós adjacentes a A (o nó ativo), alterando o
rótulo de cada um deles para indicar a distância até A

– Sempre que um nó é rotulado novamente, ele também é rotulado com o nó a partir do
qual o teste foi feito; assim, podemos reconstruir o caminho final mais tarde

– Verificamos todos os nós provisoriamente rotulados no grafo inteiro e tornamos
permanente o nó que tem o menor rótulo. (esse nó passa a ser o novo nó ativo)

– Agora, começamos por B e examinamos todos os nós adjacentes a ele

– Se a soma do rótulo de B e a distância entre B e o nó que está sendo considerado for menor
que o rótulo desse nó, teremos um caminho mais curto; portanto, o nó será rotulado
novamente.

– Depois que todos os nós adjacentes ao nó ativo tiverem sido inspecionados e os rótulos
provisórios tiverem sido alterados na medida do possível, o grafo inteiro será pesquisado até
ser encontrado o nó com o rótulo provisório de menor valor. Esse nó passará a ser o nó
permanente e se tornará o nó ativo na próxima iteração

1.7.2 – Roteamento por inundação

✔ Cada pacote de entrada é enviado para toda linha de saída, exceto para
aquela em que chegou

✔ Gera uma quantidade infinita de pacotes duplicados

✔ Medidas devem ser tomadas para evitar a duplicação:
– Ter um contador de hops contido no cabeçalho de cada pacote

● o contador é decrementado em cada hop, com o pacote sendo descartado quando o
contador atingir zero

● o ideal é que o contador de hops seja inicializado com o comprimento do caminho
desde a origem até o destino

● Se não souber o tamanho do caminho, o transmissor poderá inicializar o contador com
o valor referente ao pior caso, ou seja, o diâmetro total da sub-rede

– Controlar quais pacotes foram transmitidos por inundação, a fim de evitar transmiti-
los uma segunda vez

● uma forma de conseguir isso é fazer o roteador de origem inserir um número de
sequência em cada pacote recebido de seus hosts

● cada roteador precisará de uma lista por roteador de origem informando quais números
de sequência originários desse ponto já foram vistos

● se houver um pacote de entrada na lista, ele não será transmitido na inundação
● para evitar que as listas cresçam indefinidamente, cada lista deve ser incrementada de

acordo com um contador k, o que significa que todos os números de sequência até k
foram vistos

● quando um pacote for recebido, será fácil verificar se ele é uma cópia; se for, ele será
descartado

● a lista completa abaixo de k não é necessária, visto que k na verdade resume essa lista

✔ Uma variação um pouco mais prática do algoritmo de inundação é a
inundação seletiva

– Os roteadores não enviam cada pacote de entrada para todas as linhas, apenas
para aquelas que provavelmente estão na direção certa

● não há muita razão para se utilizar uma linha da região leste para transportar um
pacote cujo destino seja a região oeste

✔ Emprego do algoritmo de inundação
– Em aplicações militares:

● muitos roteadores podem ser destruídos a qualquer momento

– Em aplicações de bancos de dados distribuídos:
● às vezes é necessário atualizar todos os bancos de dados ao mesmo tempo

– Em redes sem fios:
● todas as mensagens transmitidas por uma estação podem ser recebidas por todas as

outras estações dentro de seu alcance de rádio

– Em medidores de desempenho:
● usado como uma unidade de medida que servirá como base de comparação com

outros algoritmos de roteamento
● o algoritmo de inundação sempre escolhe o caminho mais curto, pois todos os

caminhos possíveis são selecionados em paralelo
● nenhum outro algoritmo é capaz de produzir um retardo de menor duração

1.7.3 – Roteamento com Vetor de Distância

✔ Os algoritmos de roteamento com vetor de distância operam fazendo cada
roteador manter uma tabela (isto é, um vetor) que fornece a melhor
distância conhecida até cada destino e determina qual linha deve ser
utilizada para se chegar lá

– Essas tabelas são atualizadas através da troca de informações com os vizinhos

✔ Algoritmo original da ARPANET
– Utilizado no início da Internet com o nome RIP

✔ A tabela (isto é, um vetor) contém uma entrada para cada um dos
roteadores da sub-rede

– Essa entrada contém duas partes:
● a linha de saída preferencial a ser utilizada para esse destino
● uma estimativa do tempo ou da distância até o destino

✔ A unidade métrica utilizada pode ser:
– número de hops

– retardo de tempo em milissegundos

– número total de pacotes enfileirados no caminho, etc

✔ Pressupõe-se que o roteador conheça a "distância" até cada um de seus
vizinhos

– se a unidade métrica for o hop, a distância será de apenas um hop

– se a unidade métrica for o comprimento da fila, o roteador simplesmente
examinará cada uma das filas

– se a unidade métrica for o retardo, o roteador poderá medi-lo diretamente com
pacotes ECHO

✔ Ex: suponha que a unidade métrica é o retardo e que o roteador
conhece o retardo até cada um de seus vizinhos

● cada roteador envia a cada vizinho uma lista de seus retardos estimados até cada
destino

● o roteador também recebe uma lista semelhante de cada vizinho
● suponha que uma dessas tabelas tenha acabado de chegar do vizinho X e que Xi

é a estimativa de X sobre o tempo que ele levará para chegar até o roteador i
● o roteador sabe que o seu retardo para X é de m ms
● o roteador saberá que pode alcançar o roteador i por meio de X em (Xi + m) ms
● efetuando esse cálculo para cada vizinho, um roteador pode descobrir qual

estimativa parece ser a melhor
● o roteador já poderá usar essa estimativa e a linha correspondente em sua nova

tabela de roteamento

✔ Exemplo: cálculo da tabela de roteamento de J
– a parte (a) da figura mostra uma sub-rede

– as quatro primeiras colunas da parte (b) mostram os vetores de retardo recebidos
dos vizinhos do roteador J

O problema da contagem até infinito
✔ Problema na prática: converge lentamente para a tabela correta definitiva

– reage com rapidez a boas notícias, mas reage devagar a más notícias

✔ Exemplo: considere uma sub-rede de cinco nós (linear) na qual a unidade
métrica para calcular o retardo é o número de hops.

✔ Suponha que A inicialmente esteja inativo e que todos os outros
roteadores saibam disso. De repente A fica ativo

✔ Exercício:

Considere a sub-rede da figura abaixo. O roteamento com vetor de distância é
usado e os vetores a seguir acabaram de entrar no roteador C:

– de B: (5,0,8,12,6,2)

– de D: (16,12,6,0,9,10)

– de E: (7,6,3,9,0,4)

Os retardos medidos para B, D e E são 6, 3 e 5, respectivamente. Qual a nova
tabela de roteamento de C? Forneça a linha de saída a ser usada e o retardo
esperado

1.7.4 – Roteamento por Estado de Enlace

✔ Substituiu o algoritmo Vetor de Distância na ARPANET/Internet
– Como no início todas as linhas tinham 56 kbps, a largura de banda das linhas não era

importante

– Vetor de Distância convergia lentamente

✔ O princípio de funcionamento é:
– 1. Cada roteador deve descobrir seus vizinhos e aprender seus endereços de rede

– 2. Cada roteador deve medir o retardo ou o custo até cada um de seus vizinhos

– 3. Cada roteador deve criar um pacote que informe tudo o que ele acabou de aprender

– 4. Cada roteador de enviar esse pacote a todos os outros roteadores

– 5. Cada roteador deve calcular o caminho mais curto até cada um dos outros roteadores

Conhecendo os vizinhos

✔ Quando um roteador é inicializado, sua primeira tarefa é aprender quem
são seus vizinhos

– Esse objetivo é alcançado enviando-se um pacote HELLO especial em cada linha
ponto a ponto

– O roteador da outra extremidade deve enviar de volta uma resposta, informando
quem é

– Esses nomes devem ser globalmente exclusivos

✔ Quando dois ou mais roteadores estão conectados por uma LAN, a situação
é um pouco mais complicada

Como medir o custo da linha

✔ O algoritmo exige que cada roteador conheça o retardo para cada um de
seus vizinhos (ou pelo menos tenha uma boa estimativa de qual seja ele)

– Enviando um pacote ECHO pela linha, e o outro lado deve transmitir de volta
imediatamente

– Mede-se o tempo de ida e volta e divide-se por dois
● Pressupõe-se que os retardos são simétricos

– Para se melhorar a estimativa, deve-se realizar o teste várias vezes e usar a média
obtida

✔ A carga deve ou não ser levada em consideração ao ser medido o retardo?

✔ Para levar a carga em conta:
– o timer encarregado de medir o tempo de ida e volta deve ser iniciado quando o

pacote ECHO for enfileirado

– quando um roteador tiver de escolher entre duas linhas com a mesma largura de
banda, sendo que uma está mais carregada que a outra, o roteador irá considerar
a rota sobre a linha não carregada um caminho mais “curto”

– essa opção resultará em melhor desempenho

✔ Para não levar a carga em conta:
– o timer deve ser iniciado quando o pacote ECHO atingir o início da fila

– evita oscilação da tabela de roteamento

Como criar pacotes de estado de enlace
✔ De posse das informações necessárias para a troca, a próxima etapa é

cada roteador criar um pacote que contenha todos os dados:
– identidade do transmissor

– número de sequência

– idade

– lista de vizinhos, com o retardo referente a cada vizinho

✔ Facilidade para serem criados, dificuldade para saber quando devem ser
criados

Distribuição dos pacotes de estado de
enlace

✔ À medida que os pacotes são distribuídos e instalados, os roteadores que
obtiverem os primeiros pacotes mudarão suas rotas

– os diferentes roteadores talvez estejam usando diferentes versões da topologia

– isso poderá levar a inconsistências, loops, máquinas inacessíveis e outros
problemas

✔ A ideia fundamental é usar o algoritmo de inundação para distribuir os
pacotes de estado de enlace

– cada pacote contém um número de sequência que é incrementado para cada novo
pacote enviado

✔ os roteadores controlam todos os pares (roteador de origem, sequência)
que veem

✔ quando é recebido, o novo pacote de estado de enlace é conferido na lista
de pacotes já verificados

– se for novo, ele será encaminhado a todas as linhas, exceto à linha por onde
chegou

– se for uma cópia, o pacote será descartado

– se um pacote recebido tiver com número de sequência mais baixo que o mais alto
número de sequência detectado até o momento, ele será rejeitado e considerado
obsoleto

✔ Esse procedimento apresenta alguns problemas:
– 1. Se os números de sequência se repetirem, a confusão tomará conta

● solução: usar um número de sequência de 32 bits
● Ex: com um pacote de estado de enlace por segundo, seriam necessários 137 anos

para um número se repetir

– 2. Se um roteador apresentar falha, ele perderá o controle de seu número de
sequência

● Ex: se ele começar de novo em 0, o pacote seguinte será rejeitado por ser considerado
uma cópia

– 3. Se um número de sequência for adulterado
● Ex: se o número 65.540 for recebido no lugar do número 4 (um erro de 1 bit), os

pacotes de 5 a 65.540 serão rejeitados como obsoletos

✔ A solução para todos esses problemas é incluir a idade de cada pacote após o
número de sequência e decrementá-la uma vez por segundo

– Quando a idade atingir zero, as informações desse roteador serão descartadas

– O campo idade também é decrementado por cada roteador durante o processo inicial de
inundação

✔ Quando um pacote de estado de enlace chega a um roteador para inundação,
ele não é imediatamente enfileirado para transmissão

– Em vez disso, ele é colocado em uma área de retenção para aguardar um pouco

– Se outro pacote de estado de enlace da mesma origem chegar antes da transmissão do
primeiro pacote, seus números de sequência serão comparados

● se forem iguais, a cópia será descartada
● se forem diferentes, o mais antigo será descartado

✔ Para evitar erros nas linhas entre dois roteadores, todos os pacotes de estado
de enlace são confirmados

✔ Quando uma linha ficar ociosa, a área de retenção será varrida
sequencialmente, a fim de se selecionar um pacote ou uma confirmação a
enviar

✔ Exemplo: A estrutura de dados utilizada pelo roteador B da sub-rede
– Cada linha corresponde a um pacote de estado de enlace recém-chegado, mas

ainda não totalmente processado

– A tabela registra a origem do pacote, seu número de sequência e idade, e os dados
correspondentes

– Além disso, há flags de transmissão e confirmação para cada uma das três linhas
de B (para A, C e F, respectivamente)

● Os flags de transmissão significam que o pacote deve ser enviado na linha indicada
● Os flags de confirmação significam que ele deve ser confirmado na linha indicada

Como calcular as novas rotas

✔ Uma vez que um roteador tenha acumulado um conjunto completo de
pacotes de estado de enlace, ela poderá criar o grafo da sub-rede
completo

– Na verdade, todo enlace será representado duas vezes, uma vez em cada sentido

✔ O algoritmo de Dijkstra pode ser executado no local com a finalidade de
criar o caminho mais curto até todos os destinos possíveis

– os resultados desse algoritmo podem ser instalados nas tabelas de roteamento

✔ No caso de uma sub-rede com n roteadores, cada qual com k vizinhos, a
memória necessária para armazenar os dados de entrada é proporcional a
kn

✔ Problemas com o hardware ou com o software podem causar grandes
complicações com esse algoritmo (e também com outros)

✔ Exemplos:
– se um roteador alegar ter uma linha que na realidade não tem, ou esquecer uma

linha que tem

– se um roteador deixar de encaminhar pacotes ou danificá-los enquanto os
encaminhar

– se a memória do roteador se esgotar ou se ele calcular o roteamento
incorretamente

✔ À medida que a sub-rede crescer até a faixa de dezenas ou centenas de
milhares de nós, a probabilidade de algum roteador falhar ocasionalmente
deixará de ser desprezível

– Perlman (1988) analisa em detalhes esses problemas e suas soluções

1.7.5 – Roteamento Hierárquico

✔ À medida que as redes aumentam de tamanho, as tabelas de roteamento
dos roteadores crescem proporcionalmente

✔ Roteadores exigem mais:
– memória -> tabelas cada vez maiores

– CPU -> dedicar mais tempo de processamento

– largura de banda -> mais envio de relatórios de status

✔ A rede pode crescer até o ponto em que deixará de ser viável cada
roteador ter uma entrada correspondente a cada outro roteador

– o roteamento terá de ser feito de forma hierárquica, como na rede telefônica

✔ Roteamento hierárquico -> os roteadores serão divididos em regiões
– cada roteador conhece todos os detalhes sobre como rotear pacotes para destinos

dentro de sua própria região

– não conhecem nada sobre a estrutura interna de outras regiões

✔ Quando diferentes redes estão interconectadas, cada uma é vista como uma
região separada

– os roteadores de uma rede ficam liberados da necessidade de conhecer a estrutura
topológica das outras redes

✔ Em redes muito grandes -> uma hierarquia de dois ou mais níveis
– provavelmente será necessário reunir as regiões em agrupamentos, os agrupamentos

em zonas, as zonas em grupos etc., até faltarem nomes para os agregados

✔ Exemplo de uma hierarquia de vários níveis: pacote sendo roteado de
Berkeley, na Califórnia, até Malindi, no Quênia

● o roteador de Berkeley conheceria a topologia detalhada da Califórnia, mas enviaria
todo o tráfego de fora do estado para o roteador de Los Angeles

● o roteador de Los Angeles seria capaz de rotear o tráfego para outros roteadores
domésticos, mas enviaria todo o tráfego destinado a outros países para Nova York

● o roteador de Nova York seria programado de modo a direcionar todo o tráfego para o
roteador, do país de destino, que é responsável pelo tratamento do tráfego vindo do
exterior, no nosso caso, em Nairóbi.

● por fim, o pacote seguiria seu caminho descendente pela árvore no Quênia até chegar
a Malindi

✔ Quantos níveis a hierarquia deve ter?

✔ Exemplo: considere uma sub-rede com 720 roteadores
– se não houver hierarquia, cada roteador precisará de 720 entradas na tabela de

roteamento

– se a sub-rede for particionada em 24 regiões de 30 roteadores cada uma, cada roteador
precisará de 30 entradas locais e mais 23 entradas remotas, total de 53 entradas

– se for escolhida uma hierarquia de três níveis com oito agrupamentos, cada um deles
contendo 9 regiões de 10 roteadores, cada roteador precisará de 10 entradas para
roteadores locais, 8 entradas para roteamento até outras regiões dentro de seu próprio
agrupamento e 7 entradas para agrupamentos distantes, total de 25 entradas

✔ Kamoun e Kleinrock (1979) descobriram que o número ótimo de níveis para
uma sub-rede com N roteadores é
ln(N), exigindo um total de e.ln(N) entradas por roteador

✔ Eles também demonstraram que o aumento na extensão do caminho médio
efetivo causado pelo roteamento hierárquico é suficientemente pequeno e
aceitável

1.7.6 – Roteamento por Difusão

✔ O envio de um pacote a todos os destinos simultaneamente é chamado
difusão (broadcasting)

✔ Um primeiro método de difusão permite à origem enviar um pacote
específico a cada destino

– o método não só desperdiça largura de banda como também exige que a origem
tenha uma lista completa de todos os destinos

● na prática, essa pode ser a única possibilidade. No entanto, essa maneira é a menos
desejável

✔ Um segundo método de difusão seria a inundação
– o problema da inundação como técnica de difusão é o mesmo problema que ela

tem como um algoritmo de roteamento ponto a ponto:
● gera pacotes demais e consome largura de banda em excesso.

✔ Um terceiro método de difusão: o roteamento para vários destinos ->
cada pacote conterá uma lista de destinos ou um mapa de bits indicando
os destinos desejados

– quando um pacote chega a um roteador, este verifica todos os destinos para
determinar o conjunto de linhas de saída que serão necessárias

– o roteador gera uma nova cópia do pacote para cada linha de saída a ser utilizada e
inclui em cada pacote somente os destinos que vão usar a linha

● o conjunto de destinos é particionado entre as linhas de saída

– após um número suficiente de hops, cada pacote transportará somente um destino
e poderá ser tratado como um pacote normal

✔ Um quarto método de difusão faz uso explícito da árvore de escoamento
para o roteador que inicia a difusão

– se cada roteador souber quais de suas linhas pertencem à árvore de escoamento,
ele poderá copiar um pacote de difusão de entrada em todas as linhas da árvore de
escoamento, exceto aquela em que o pacote chegou

– esse método faz excelente uso da largura de banda, gerando o número mínimo
absoluto de pacotes necessários para realizar essa tarefa

– o único problema é que cada roteador deve ter conhecimento de sua árvore de
escoamento

✔ Um quinto método de difusão (encaminhamento pelo caminho
inverso) é uma tentativa de aproximação com o comportamento do
quarto método, mesmo quando os roteadores nada sabem sobre árvores
de escoamento

– quando um pacote de difusão chega a um roteador, o roteador verifica se o pacote
chegou pela linha que normalmente é utilizada para o envio de pacotes à origem
da difusão

● em caso positivo, há uma excelente possibilidade de que o pacote de difusão tenha
seguido a melhor rota a partir do roteador e seja, portanto, a primeira cópia a chegar
ao roteador

● o roteador encaminhará cópias do pacote para todas as linhas, exceto aquela por
onde ele chegou

● em caso negativo, se o pacote de difusão tiver chegado em uma linha diferente da
preferencial para alcançar a origem, ele será descartado como uma provável duplicata

– No primeiro hop, I envia pacotes para F, H, J e N
● Cada um desses pacotes chega ao caminho preferencial para I (supondo-se que o caminho

preferencial acompanhe a árvore de escoamento) e é então indicado por um círculo em
torno da letra

– No segundo hop, são gerados oito pacotes, dois por cada um dos roteadores que
receberam um pacote no primeiro hop

● todos os oito pacotes chegam a roteadores não visitados anteriormente, e cinco deles
chegam ao longo da linha preferencial

– No terceiro hop, seis pacotes são gerados e somente três chegam pelo caminho
preferencial (em C, E e K); os outros são duplicatas

– Depois de cinco hops e 24 pacotes, a difusão termina, em comparação com quatro hops
e 14 pacotes que haveria se a árvore de escoamento fosse seguida exatamente

✔ A principal vantagem do encaminhamento pelo caminho inverso é
que ele é ao mesmo tempo razoavelmente eficiente e fácil de
implementar

✔ Não têm o overhead de uma lista de destino ou um mapa de bits em cada
pacote de difusão, como ocorre na estratégia de endereçamento para
vários destinos

✔ Ele também não requer nenhum mecanismo especial para interromper o
processo, como é o caso do algoritmo de inundação

1.7.7 – Roteamento por Multidifusão

✔ Muitas vezes é necessário que um host envie uma mensagem a todos os
outros membros do grupo

– se o grupo for pequeno, ele poderá simplesmente enviar a cada um dos outros
membros uma mensagem ponto a ponto

– se o grupo for grande, essa estratégia se tornará dispendiosa

– às vezes, a difusão pode ser utilizada; no entanto, o uso da difusão para informar a
1000 máquinas de uma rede com um milhão de nós é ineficiente, porque a maioria
dos receptores não está interessada na mensagem (ou, pior ainda, os receptores
estão definitivamente interessados, mas não veem a mensagem)

✔ Multidifusão é um meio para enviar mensagens a grupos bem definidos
que têm um tamanho numericamente grande, mas que são pequenos em
comparação com a rede como um todo

✔ A mulidifusão exige o gerenciamento de grupos
– será preciso usar algum método para criar e destruir grupos, e para permitir que os

hosts entrem e saiam de grupos

✔ Um host ao se associar a um grupo, ele informará seu roteador desse fato
– é importante que os roteadores saibam quais de seus hosts pertencem a cada um

dos grupos

– os hosts devem informar seus roteadores sobre alterações na associação a grupos,
ou então os roteadores terão de consultar seus hosts periodicamente

– os roteadores devem ficar sabendo quais de seus hosts estão em cada um dos
grupos

– os roteadores darão essa informação a seus vizinhos, e assim a informação se
propagará pela sub-rede

✔ Cada roteador calcula uma árvore de escoamento que engloba todos os outros
roteadores da sub-rede

✔ Quando um processo envia um pacote de multidifusão a um grupo, o primeiro
roteador examina sua árvore de escoamento e a poda, removendo todas as
linhas que não levam a hosts que são membros do grupo

✔ Existem vários métodos que podem ser usados para podar a árvore de
escoamento

✔ O mais simples pode ser usado se o roteamento por estado de enlace for
empregado e cada roteador estiver ciente da topologia completa, inclusive
de quais hosts pertencem a cada um dos grupos

– a árvore de escoamento pode ser podada, começando pela extremidade de cada
caminho, seguindo em direção à raiz e removendo todos os roteadores que não
pertencem ao grupo em questão

✔ Quando se emprega o roteamento com vetor de distância, é necessário utilizar
uma outra estratégia de poda

– o algoritmo básico é o encaminhamento pelo caminho inverso
● sempre que um roteador sem hosts interessados em um grupo específico e sem conexões

para outros roteadores recebe uma mensagem de multidifusão relacionada a esse grupo,
ele responde com uma mensagem PRUNE, informando ao transmissor que este não deve
enviar mais mensagens de multidifusão para esse grupo

● quando um roteador sem membros de grupos entre seus hosts recebe tais mensagens em
todas as suas linhas, ele também pode responder com uma mensagem PRUNE

– uma desvantagem potencial desse algoritmo é que ele é mal dimensionado para redes
grandes

● suponha que uma rede tenha n grupos, cada qual com uma média de m membros
● para cada grupo, devem ser armazenadas m árvores de amplitudes podadas, perfazendo

um total de mn árvores
● quando há muitos grupos grandes, é necessário um espaço de armazenamento

considerável para armazenar todas as árvores

✔ Um projeto alternativo utiliza árvores baseadas no núcleo
– é calculada uma única árvore de escoamento por grupo, com a raiz (o núcleo)

próxima ao centro do grupo

– para enviar uma mensagem de multidifusão, um host a envia ao núcleo, que então
faz a multidifusão ao longo da árvore de escoamento

– embora essa árvore não seja ótima para todas as origens, a redução dos custos de
armazenamento de m árvores para uma única árvore por grupo é uma economia
importante

1.7.8 – Roteamento para hosts móveis

✔ Antes de rotear um pacote para um host móvel, primeiro a rede precisa
localizá-lo

✔ Os hosts que nunca se movem são chamados estacionários
– estão conectados à rede por fios de cobre ou fibra ópticas

✔ Os hosts migrantes são hosts estacionários que se deslocam de um local fixo
para outro de tempos em tempos, mas que utilizam a rede apenas quando
estão fisicamente conectados a ela

✔ Os hosts visitantes realmente utilizam seus computadores em trânsito e
querem manter suas conexões à medida que se deslocam

✔ Hosts móveis serão considerados os hosts que estão fora de suas bases e que
ainda querem se manter conectados (migrantes e visitantes)

✔ Partimos do princípio de que todos os hosts têm um local inicial
permanente, que nunca muda

✔ Os hosts também têm um endereço local permanente que pode ser usado
para determinar seus locais iniciais

✔ O objetivo do roteamento em sistemas com hosts móveis é tornar possível
o envio de pacotes a hosts móveis que estejam usando seus endereços
locais, onde quer que eles estejam

✔ O grande problema é localizá-los

✔ Agentes externos → processos que controlam todos os hosts móveis que
visitam a área

✔ Agente local → controla os hosts cuja base se encontra na área, mas no
momento que estão visitando outra área

✔ Quando um novo host entra em uma área, ele deve se registrar com o
agente externo dessa área

✔ Procedimento de registro:
– 1. Periodicamente, cada agente externo transmite um pacote anunciando sua

existência e seu endereço
● um host móvel recém-chegado pode aguardar uma dessas mensagens
● se nenhuma mensagem chegar rápido o suficiente, o host móvel poderá transmitir (por

difusão) um pacote com a mensagem: “Há algum agente externo por aí?”

– 2. O host móvel se registra com o agente externo, fornecendo seu endereço local, o
endereço atual da camada de enlace de dados e algumas informações de segurança

– 3. O agente externo entra em contato o agente local do host móvel e diz: “Um de seus
hosts está por aqui.”

● a mensagem do agente externo para o agente local contém o endereço de rede do
agente externo

● a mensagem contém ainda as informações de segurança, a fim de convencer o agente
local de que o host móvel realmente está lá

– 4. O agente local examina as informações de segurança, que contêm um timbre de hora,
para provar que foi gerado há alguns segundos

● se tudo estiver correto, o agente local diz ao agente externo para prosseguir

– 5. Quando o agente externo obtém a confirmação do agente local, ele cria uma entrada
em suas tabelas e informa ao host móvel que agora ele está registrado

✔ Quando um host deixa uma área, isso também deve ser anunciado para
permitir o cancelamento do registro

– muitos usuários desligam seus computadores abruptamente quando terminam de usá-los

1.8 – Algoritmos de controle de congestionamento

✔ Congestionamento → situação em que há pacotes em excesso na sub-
rede (ou em parte da sub-rede) causando a diminuição do desempenho

– Quando o número de pacotes enviados na sub-rede pelos hosts está dentro de sua
capacidade de transporte, eles são todos entregues (exceto alguns que sofram com
erros de transmissão), e o número entregue é proporcional ao número enviado

– Quando o tráfego aumenta muito, os roteadores já não são capazes de suportá-lo e
começam a perder pacotes

● No caso de tráfego muito intenso, o desempenho entra em colapso total, e quase
nenhum pacote é entregue

✔ O congestionamento pode ser causado por diversos fatores:
– se os fluxos de pacotes começarem a chegar repentinamente em três ou

quatro linhas de entrada e todas precisarem da mesma linha de saída, haverá
uma fila

● se a memória for insuficiente para conter todos eles, os pacotes se perderão
● a inclusão de mais memória ajudará até certo ponto
● e se os roteadores tiverem um volume infinito de memória?
● o congestionamento piorará pois, no momento em que os pacotes chegarem ao

início da fila, eles já terão sido temporizados (repetidamente) e as duplicatas já
terão sido enviadas

– processadores lentos também podem causar congestionamento
● se as CPUs dos roteadores forem lentas na execução de tarefas administrativas

(enfileiramento de buffers, atualização de tabelas etc.), poderão surgir filas,
mesmo que haja capacidade de linha suficiente

– linhas de baixa largura de banda também podem causar congestionamento

✔ A atualização das linhas sem atualização dos processadores, ou vice-
versa, ajuda um pouco, mas geralmente empurra o gargalo para outro
lugar

– o problema real é uma incompatibilidade entre partes do sistema

– esse problema persistirá até que todos os componentes estejam em equilíbrio

✔ Diferença entre controle de congestionamento e controle de fluxo
– o controle de congestionamento é uma questão global, envolvendo o

comportamento de todos os hosts, de todos os roteadores, de operações de
repasse dentro dos roteadores e de todos os outros fatores que tendem a reduzir
a capacidade de transporte da sub-rede

– o controle de fluxo se baseia no tráfego ponto a ponto entre um transmissor e um
receptor, garantindo que um transmissor rápido não possa transmitir dados
continuamente com maior rapidez do que o receptor é capaz de absorver

1.8.1 – Princípios gerais do controle de
congestionamento

✔ Pode ser analisado de acordo com os princípios da Teoria de Controle
– essa abordagem nos leva à divisão de todas as soluções em dois grupos:

loops abertos e loops fechados

✔ As soluções para malha aberta tentam resolver o problema com
um bom projeto, para tentar garantir que os problemas não
ocorrerão

– uma vez que o sistema esteja em funcionamento, não serão feitas
correções que afetem processos em andamento

✔ Ferramentas para controle de congestionamento que utilizam
malha aberta:

– decidir quando aceitar mais tráfego

– decidir quais pacotes devem ser descartados e quando isso deve ser feito

– programar decisões em vários pontos da rede

✔ Tudo isso tem em comum o fato de que as decisões serão tomadas
sem levar em conta o estado atual da rede

✔ As ferramentas para malha fechada se baseiam no conceito de um loop
de feedback

✔ Essa estratégia tem três partes, quando aplicada ao controle de
congestionamento:

– 1. Monitorar o sistema para detectar quando e onde ocorre congestionamento

– 2. Enviar essas informações para lugares onde alguma providência possa ser
tomada

– 3. Ajustar a operação do sistema para corrigir o problema.

✔ Várias unidades métricas podem ser usadas para monitorar a sub-rede
quanto à ocorrência de congestionamentos

– percentagem de todos os pacotes descartados por falta de espaço em buffer

– média dos comprimentos de fila

– número de pacotes interrompidos por alcançarem o tempo limite e que são
retransmitidos

– retardo médio de pacotes

– desvio padrão do retardo de pacotes

✔ A segunda etapa do loop de feedback é transferir informações sobre
congestionamento do ponto em que o fenômeno é detectado para o
ponto em que algo pode ser feito em relação a ele

– a solução mais óbvia é o roteador detectar o congestionamento com a
finalidade de enviar um pacote à origem ou às origens de tráfego,
anunciando o problema

● esses pacotes extras aumentam a carga exatamente no momento em que a
sub-rede está congestionada

– pode-se também reservar um bit ou um campo em todos os pacotes para
que os roteadores o preencham sempre que o congestionamento superar
algum limite inicial

● quando detecta esse estado de congestionamento, o roteador preenche o
campo em todos os pacotes de saída, a fim de alertar os vizinhos

– pode-se também fazer com que os hosts ou roteadores enviem pacotes de
sondagem periodicamente para perguntar de forma explícita sobre o
congestionamento

● essa informação pode ser usada para rotear o tráfego em áreas problemáticas

✔ Em todos os esquemas de feedback, a esperança é que o
conhecimento do congestionamento faça com que os hosts tomem
as providências necessárias para reduzi-lo

✔ A escala de tempo deve ser ajustada com cuidado
– se todas as vezes que dois pacotes chegarem em sequência um roteador

gritar PARE e toda vez que um roteador ficar ocioso por 20 s ele gritar VÁ,
o sistema oscilará muito e nunca convergirá

– se ele aguardar 30 minutos para ter certeza antes de comunicar algo, o
mecanismo de controle de congestionamento reagirá muito lentamente

✔ Obter o tempo correto é uma questão não trivial

✔ A presença de congestionamento significa que a carga é
(temporariamente) maior do que os recursos (de uma parte do
sistema) podem manipular. Há duas soluções:

– aumentar os recursos

– diminuir a carga

✔ Aumentando os recursos:
– usar linhas extras para aumentar temporariamente a largura de banda

entre determinados pontos

– aumento da potência de transmissão em satélites quase sempre
proporciona largura de banda mais alta

– divisão do tráfego em várias rotas em vez de sempre utilizar a melhor
rota

– roteadores sobressalentes que podem ser ativados para oferecer maior
capacidade

✔ Diminuindo a carga:
– negar o serviço a alguns usuários

– piorar a qualidade do serviço para alguns ou para todos os usuários

– fazer os usuários programarem suas necessidades de um modo mais
previsível

1.8.2 – Políticas de prevenção de
congestionamento

✔ Políticas na camada de enlace:
– política de retransmissão → trata da rapidez com que um transmissor chega ao

timeout
● um transmissor que chega ao timeout com rapidez e retransmite todos os pacotes

pendentes usando go back n irá impor uma carga mais pesada sobre o sistema do que
um transmissor lento que utilize retransmissão seletiva

– política de cache fora de ordem → armazenamento em buffer
● se os receptores costumam descartar todos os pacotes fora da ordem, esses pacotes

terão de ser retransmitidos mais tarde, criando carga extra

– política de confirmação
● se cada pacote for confirmado imediatamente, os pacotes de confirmação irão gerar

tráfego extra
● se as confirmações forem guardadas para serem transmitidas por carona sobre o

tráfego inverso, poderão ocorrer interrupções e retransmissões extras

– política de controle de fluxo
● uma janela pequena reduz a taxa de dados

✔ Políticas na camada de rede
– circuitos virtuais versus datagramas

● muitos algoritmos de controle de congestionamento só funcionam com sub-
redes de circuitos virtuais

– política de serviços e de enfileiramento de pacotes
● os roteadores têm uma fila por linha de entrada, uma fila por linha de saída ou

os dois
● essa estratégia está relacionada à ordem em que os pacotes são processados.

e.g.: por rodízio ou baseada na prioridade

– política de descarte
● é a regra que informa qual pacote será descartado quando não houver espaço

– algoritmo de roteamento
● evitar o congestionamento espalhando o tráfego por todas as linhas

– gerenciamento da duração do pacote → lida com o tempo de duração de
um pacote antes de ser descartado

● se esse tempo for muito longo, os pacotes perdidos poderão atrapalhar o
funcionamento por muito tempo

● se o tempo for muito curto os pacotes poderão chegar ao timeout antes de
alcançarem seu destino

✔ Políticas na camada de transporte
– na camada de transporte, surgem as mesmas questões que ocorrem na

camada de enlace de dados

– é mais difícil determinar o intervalo de timeout, porque o tempo de
trânsito na rede é menos previsível que o tempo de trânsito sobre um
fio entre dois roteadores

● se o intervalo de timeout for curto demais, serão enviados pacotes extras
desnecessariamente

● se ele for muito longo, o congestionamento será reduzido, mas o tempo
de resposta será sacrificado sempre que um pacote for perdido

1.8.3 - Controle de congestionamento em sub-
redes de circuitos virtuais

✔ Controle de admissão → uma vez que o congestionamento tenha
dado alguma indicação de sua existência, nenhum outro circuito
virtual será estabelecido até que o problema tenha passado

– todas as tentativas de estabelecer novas conexões da camada de
transporte falharão

– fácil de ser executada

– no sistema telefônico, quando um switch fica sobrecarregado, o controle
de admissão também é acionado, e não são fornecidos sinais de discagem

✔ Uma estratégia alternativa é permitir novos circuitos virtuais, mas
rotear com cuidado todos os novos circuitos virtuais em áreas
problemáticas

✔ Outra estratégia é negociar um acordo entre o host e a sub-rede
quando um circuito virtual for configurado

– normalmente, esse acordo especifica o volume e a formatação do tráfego, a
qualidade de serviço exigida e outros parâmetros

– para manter essa parte do acordo, a sub-rede reservará recursos ao longo do
caminho quando o circuito for configurado

● esses recursos podem incluir espaço em tabelas e buffers nos roteadores, além de
largura de banda nas linhas

– dessa maneira, é improvável que ocorra congestionamento nos novos circuitos
virtuais, pois todos os recursos necessários estarão disponíveis

– esse tipo de reserva sempre poderá ser feito todo o tempo como procedimento
de operação padrão ou somente quando a sub-rede estiver congestionada

● uma desvantagem de fazer isso o tempo todo é a tendência a desperdiçar
recursos

– o preço desse controle de congestionamento é a largura de banda não utilizada
ou seja, desperdiçada

1.8.4 - Controle do congestionamento em sub-
redes de datagramas

✔ Cada roteador pode monitorar a utilização de suas linhas de saída e de
outros recursos

– o roteador pode associar a cada linha uma variável real, u, cujo valor entre 0,0
e 1,0 reflete a utilização recente dessa linha

– para manter uma boa estimativa de u, uma amostra da utilização instantânea
da linha, f (0 ou 1), pode ser obtida periodicamente, sendo u atualizada de
acordo com:

unova=auantiga1−a f

– sempre que u ultrapassa o limite, a linha de saída entra em um estado de
"advertência"

– cada pacote recém-chegado é conferido para sabermos se sua linha de saída
encontra-se em estado de advertência

● se estiver, alguma ação será adotada

O bit de advertência
✔ O estado de advertência é assinalado ativando-se um bit especial no

cabeçalho do pacote
– Quando o pacote chega a seu destino, a entidade de transporte copia o bit na

próxima confirmação a ser enviada de volta à origem e, em seguida, a origem
interrompe o tráfego

– Enquanto estiver no estado de advertência, o roteador continua a definir o bit
de advertência, e isso significa que a origem continua a receber informações
com o bit ativado

– A origem monitora a fração de confirmações com o bit ativado e ajusta sua
velocidade de transmissão de acordo com ele

– Enquanto os bits de advertência continuam a fluir, a origem continua a diminuir
sua taxa de transmissão

– Quando diminui a velocidade de chegada das confirmações, a origem aumenta
sua taxa de transmissão

– Observe que, considerando que cada roteador ao longo do caminho pode ativar
o bit de advertência, o tráfego só aumenta quando nenhum roteador tiver
problemas

Pacotes reguladores

✔ O roteador enviará um pacote regulador ao host de origem,
informando o destino encontrado no pacote

✔ O pacote original é marcado (um bit de cabeçalho é ativado) para
que ele não venha a gerar mais pacotes reguladores ao longo do
caminho

✔ Ao receber o pacote regulador, o host de origem é obrigado a
reduzir em X% o tráfego enviado ao destino especificado

✔ Como outros pacotes com o mesmo destino provavelmente já
estarão a caminho e irão gerar ainda mais pacotes reguladores, o
host deve ignorar os pacotes reguladores que se refiram a esse
destino por um intervalo de tempo fixo

✔ Depois que esse tempo houver expirado, o host esperará mais
pacotes reguladores para outro intervalo

– se chegar um pacote, a linha ainda estará congestionada
● o host reduzirá o fluxo ainda mais e começará novamente a ignorar pacotes

reguladores

– se não chegar nenhum outro pacote regulador durante o período de escuta
● o host poderá aumentar o fluxo mais uma vez

✔ O feedback implícito desse protocolo pode ajudar a evitar
congestionamento sem estrangular o fluxo, a menos que ocorra
algum problema

✔ Os hosts reduzem o tráfego ajustando seus parâmetros de
orientação como, por exemplo, o tamanho de sua janela

– em geral, o primeiro pacote regulador faz a taxa de dados se reduzir a 0,50
de seu valor anterior

– o seguinte causa uma redução de 0,25 e assim por diante

– os aumentos são feitos em incrementos menores para impedir que voltem
rapidamente a ocorrer congestionamentos

✔ Os roteadores podem manter diversos valores limites
– dependendo do valor limite que tiver sido ultrapassado, o pacote regulador

poderá conter uma advertência suave, uma advertência severa ou um
ultimato

✔ Os roteadores podem usar comprimentos de filas ou buffers, em vez
de linhas como sinal para ativar o processo

– também é possível utilizar com essa métrica a mesma ponderação
exponencial que foi usada com u

Pacotes reguladores hop a hop

✔ Em altas velocidades ou em longas distâncias, o envio de um pacote
regulador para os hosts de origem não funciona bem porque a reação
é muito lenta

✔ Uma abordagem alternativa é fazer com que o pacote regulador tenha
efeito a cada hop pelo qual passar

✔ O efeito líquido desse esquema hop a hop é oferecer alívio rápido no
ponto de congestionamento, ao preço de aumentar o consumo de
buffers

✔ Dessa maneira, o congestionamento pode ser cortado pela raiz sem
perda de pacotes

1.8.5 – Escoamento de carga

✔ Considerado a artilharia pesada: quando nenhum dos anteriores
tiver resolvido o problema

✔ O escoamento de carga acontece quando os roteadores estão
sendo inundados por pacotes que não podem manipular: eles
simplesmente devem descartá-los

✔ Um roteador que está sendo sufocado com pacotes pode
simplesmente selecionar ao acaso aqueles que deverão ser
descartados

✔ Ou, o pacote a ser descartado pode depender das aplicações em
execução

– transferência de arquivos → um pacote antigo vale mais que um novo

– multimídia → um pacote novo é mais importante que um antigo

✔ “antigo é melhor que novo” → política do vinho

✔ “novo é melhor que antigo” → política do leite

✔ Numa política de descarte inteligente, as aplicações devem marcar
seus pacotes por classes de prioridade

– quando os pacotes tiverem de ser descartados, os roteadores poderão
descartar primeiro os pacotes da classe mais baixa, depois os da classe
mais baixa seguinte e assim por diante

● É claro que, a menos que exista algum incentivo especial para marcar os
pacotes com algo diferente de MUITO IMPORTANTE — NUNCA DESCARTAR,
ninguém o fará

✔ O incentivo poderia vir sob a forma de dinheiro:
– transmissão dos pacotes de baixa prioridade mais econômica que o envio

dos pacotes de alta prioridade

– uma alternativa seria permitir que os transmissores enviassem pacotes de
alta prioridade em condições de carga leve mas, à medida que a carga
aumentasse, eles seriam descartados, encorajando assim os usuários a
interromperem a transmissão desses quadros

– permitir que os hosts excedam os limites especificados no circuito virtual
● ficam sujeitos à condição de que todo o tráfego em excesso seja marcado

como tráfego de baixa prioridade

Detecção aleatória prematura
✔ Lidar com o congestionamento logo que se inicie é mais eficaz do que

permitir que o congestionamento se consolide e depois tentar lidar
com ele

– descartar pacotes antes que todo o espaço dos buffers realmente se esgote

– em alguns protocolos de transporte (inclusive o TCP), a resposta à perda de
pacotes é tornar a origem mais lenta

● o TCP foi projetado para redes fisicamente conectadas e essas redes são muito
confiáveis

● a perda de pacotes se deve muito mais ao estouro de buffers do que a erros de
transmissão.

– a ideia consiste em ter tempo para empreender alguma ação antes de ser
tarde demais

– para determinar quando começar a descartar pacotes:
● os roteadores mantêm uma média atualizada dos comprimentos de suas filas
● quando o comprimento médio da fila em alguma linha excede um limite,

considera-se que a linha está congestionada e é executada uma ação para
solucionar o problema

✔ O roteador provavelmente não poderá detectar a origem que está
causando a maior parte do problema

– ele escolhe um pacote ao acaso na fila que disparou a ação

✔ Como o roteador deve fornecer informações à fonte sobre o
problema?

– enviar um pacote regulador, conforme descrito antes
● um problema que surge é que ela impõe ainda mais carga à rede já

congestionada

– uma estratégia diferente é simplesmente descartar o pacote selecionado e
não informar sobre o fato

● a origem notará a falta de confirmação e executará alguma ação
● como ela sabe que a perda de pacotes em geral é causada pelo

congestionamento e por descartes, a origem responderá diminuindo a taxa
de transmissão, em vez de continuar a tentar transmitir com maior
intensidade

● essa forma implícita de feedback só funciona quando as origens respondem
à perda de pacotes reduzindo sua taxa de transmissão

● Em redes sem fios, nas quais a maioria das perdas se deve ao ruído no
enlace aéreo, essa abordagem não pode ser usada

1.8.6 – Controle de flutuação

✔ Para aplicações como a transmissão de áudio e vídeo, não importa muito
se os pacotes demorarem 20 ms ou 30 ms para serem entregues, desde
que o tempo em trânsito seja constante

✔ A variação (isto é, o desvio padrão) nos tempos de chegada de pacotes é
chamada flutuação (jitter)

– e.g.: uma flutuação elevada, na qual alguns pacotes demoram 20 ms e outros
demoram 30 ms para chegar, resultará em uma qualidade irregular do som ou do
filme

– e.g: um acordo em que 99% dos pacotes fossem entregues com um retardo no
intervalo de 24,5 ms a 25,5 ms poderia ser aceitável

✔ O valor médio escolhido deve ser viável
– deve levar em conta o tempo de trânsito na velocidade da luz e o retardo mínimo

na passagem pelos roteadores, e deixar uma pequena folga para alguns retardos
inevitáveis

✔ A flutuação pode ser limitada pelo cálculo do tempo de trânsito esperado
para cada hop ao longo do caminho

– quando um pacote chega a um roteador, este verifica se o pacote está adiantado
ou atrasado em sua programação

– essas informações são armazenadas no pacote e atualizadas a cada hop
● se estiver adiantado, o pacote será retido um tempo suficiente para que seja

sincronizado
● se estiver atrasado, o roteador tentará enviá-lo rapidamente (furando fila)

✔ O algoritmo pode sempre escolher o pacote que estiver mais
atrasado para ser enviado

– pacotes que estão adiantados na programação têm sua taxa de
transmissão reduzida

– pacotes que estão atrasados são acelerados

– em ambos os casos, essa ação reduz o volume de flutuação

✔ Em algumas aplicações, como vídeo por demanda, a flutuação
pode ser eliminada pelo armazenamento em buffer no receptor

✔ Para outras aplicações que exigem interação em tempo real entre
pessoas, como telefonia da Internet e videoconferência, o retardo
inerente do armazenamento em buffer não é aceitável

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

